
l / A New York Times head-
line from November 10, 1919,
describing the observations
discussed in example 5.

by gravity, although the effect should be very small. The �rst im-
portant experimental con�rmation of relativity came in 1919 when
stars next to the sun during a solar eclipse were observed to have
shifted a little from their ordinary position. (If there was no eclipse,
the glare of the sun would prevent the stars from being observed.)
Starlight had been de�ected by the sun’s gravity. Figure m is a
photographic negative, so the circle that appears bright is actu-
ally the dark face of the moon, and the dark area is really the
bright corona of the sun. The stars, marked by lines above and
below them, appeared at positions slightly different than their nor-
mal ones.

m / Example 5.

Black holes example 6
A star with suf�ciently strong gravity can prevent light from leav-
ing. Quite a few black holes have been detected via their gravita-
tional forces on neighboring stars or clouds of gas and dust.
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Summary
Selected vocabulary
potential energy the energy having to do with the distance be-

tween two objects that interact via a noncon-
tact force

Notation
PE . . . . . . . . . potential energy

Other terminology and notation
U or V . . . . . . symbols used for potential energy in the scien-

ti�c literature and in most advanced textbooks

Summary

Historically, the energy concept was only invented to include a
few phenomena, but it was later generalized more and more to apply
to new situations, for example nuclear reactions. This generalizing
process resulted in an undesirably long list of types of energy, each
of which apparently behaved according to its own rules.

The �rst step in simplifying the picture came with the realization
that heat was a form of random motion on the atomic level, i.e., heat
was nothing more than the kinetic energy of atoms.

A second and even greater simpli�cation was achieved with the
realization that all the other apparently mysterious forms of energy
actually had to do with changing the distances between atoms (or
similar processes in nuclei). This type of energy, which relates to
the distance between objects that interact via a force, is therefore
of great importance. We call it potential energy.

Most of the important ideas about potential energy can be un-
derstood by studying the example of gravitational potential energy.
The change in an object’s gravitational potential energy is given by

� P Egrav = � Fgrav � y, [if Fgrav is constant, i.e., the
the motion is all near the Earth’s surface]

The most important thing to understand about potential energy
is that there is no unambiguous way to de�ne it in an absolute sense.
The only thing that everyone can agree on is how much the potential
energy has changed from one moment in time to some later moment
in time.

An implication of Einstein’s theory of special relativity is that
mass and energy are equivalent, as expressed by the famousE =
mc2. The energy of a material object is given byE = mc 2.
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Problems
Keyp

A computerized answer check is available online.R
A problem that requires calculus.

? A di�cult problem.

1 A ball rolls up a ramp, turns around, and comes back down.
When does it have the greatest gravitational potential energy? The
greatest kinetic energy? [Based on a problem by Serway and Faughn.]

2 Anya and Ivan lean over a balcony side by side. Anya throws a
penny downward with an initial speed of 5 m/s. Ivan throws a penny
upward with the same speed. Both pennies end up on the ground
below. Compare their kinetic energies and velocities on impact.

3 Can gravitational potential energy ever be negative? Note
that the question refers to P E , not � P E , so that you must think
about how the choice of a reference level comes into play. [Based on
a problem by Serway and Faughn.]

4 (a) You release a magnet on a tabletop near a big piece of
iron, and the magnet slides across the table to the iron. Does the
magnetic potential energy increase, or decrease? Explain.
(b) Suppose instead that you have two repelling magnets. You give
them an initial push towards each other, so they decelerate while ap-
proaching each other. Does the magnetic potential energy increase
or decrease? Explain.

5 Let Eb be the energy required to boil one kg of water. (a) Find
an equation for the minimum height from which a bucket of water
must be dropped if the energy released on impact is to vaporize it.
Assume that all the heat goes into the water, not into the dirt it
strikes, and ignore the relatively small amount of energy required to
heat the water from room temperature to 100� C. [Numerical check,
not for credit: Plugging in Eb = 2.3 MJ/kg should give a result of
230 km.]

p

(b) Show that the units of your answer in part a come out right
based on the units given forEb.

6 A grasshopper with a mass of 110 mg falls from rest from a
height of 310 cm. On the way down, it dissipates 1.1 mJ of heat due
to air resistance. At what speed, in m/s, does it hit the ground?

. Solution, p. 557
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7 At a given temperature, the average kinetic energy per molecule
is a �xed value, so for instance in air, the more massive oxygen
molecules are moving more slowly on the average than the nitrogen
molecules. The ratio of the masses of oxygen and nitrogen molecules
is 16.00 to 14.01. Now suppose a vessel containing some air is sur-
rounded by a vacuum, and the vessel has a tiny hole in it, which
allows the air to slowly leak out. The molecules are bouncing around
randomly, so a given molecule will have to \try" many times before
it gets lucky enough to head out through the hole. Find the rate
at which oxygen leaks divided by the rate at which nitrogen leaks.
(De�ne this rate according to the fraction of the gas that leaks out
in a given time, not the mass or number of molecules leaked per unit
time.)

p

8 A person on a bicycle is to coast down a ramp of heighth and
then pass through a circular loop of radiusr . What is the small-
est value of h for which the cyclist will complete the loop without
falling? (Ignore the kinetic energy of the spinning wheels.)

p

9 Problem 9 has been deleted. ?

10 Students are often tempted to think of potential energy and
kinetic energy as if they were always related to each other, like
yin and yang. To show this is incorrect, give examples of physical
situations in which (a) PE is converted to another form of PE, and
(b) KE is converted to another form of KE. . Solution, p. 557

11 Lord Kelvin, a physicist, told the story of how he encountered
James Joule when Joule was on his honeymoon. As he traveled,
Joule would stop with his wife at various waterfalls, and measure
the di�erence in temperature between the top of the waterfall and
the still water at the bottom. (a) It would surprise most people
to learn that the temperature increased. Why should there be any
such e�ect, and why would Joule care? How would this relate to the
energy concept, of which he was the principal inventor? (b) How
much of a gain in temperature should there be between the top
and bottom of a 50-meter waterfall? (c) What assumptions did you
have to make in order to calculate your answer to part b? In reality,
would the temperature change be more than or less than what you
calculated? [Based on a problem by Arnold Arons.]

p

12 Make an order-of-magnitude estimate of the power repre-
sented by the loss of gravitational energy of the water going over
Niagara Falls. If the hydroelectric plant at the bottom of the falls
could convert 100% of this to electrical power, roughly how many
households could be powered? . Solution, p. 557
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Problem 16.

13 When you buy a helium-�lled balloon, the seller has to inate
it from a large metal cylinder of the compressed gas. The helium
inside the cylinder has energy, as can be demonstrated for example
by releasing a little of it into the air: you hear a hissing sound,
and that sound energy must have come from somewhere. The total
amount of energy in the cylinder is very large, and if the valve is
inadvertently damaged or broken o�, the cylinder can behave like a
bomb or a rocket.

Suppose the company that puts the gas in the cylinders prepares
cylinder A with half the normal amount of pure helium, and cylinder
B with the normal amount. Cylinder B has twice as much energy,
and yet the temperatures of both cylinders are the same. Explain, at
the atomic level, what form of energy is involved, and why cylinder
B has twice as much.

14 Explain in terms of conservation of energy why sweating
cools your body, even though the sweat is at the same temperature
as your body. Describe the forms of energy involved in this energy
transformation. Why don’t you get the same cooling e�ect if you
wipe the sweat o� with a towel? Hint: The sweat is evaporating.

15 (a) A circular hoop of massm and radius r spins like a wheel
while its center remains at rest. Let ! (Greek letter omega) be the
number of radians it covers per unit time, i.e., ! = 2 �=T , where
the period, T , is the time for one revolution. Show that its kinetic
energy equals (1=2)m! 2r 2.
(b) Show that the answer to part a has the right units. (Note
that radians aren’t really units, since the de�nition of a radian is a
unitless ratio of two lengths.)
(c) If such a hoop rolls with its center moving at velocity v, its
kinetic energy equals (1=2)mv2, plus the amount of kinetic energy
found in part a. Show that a hoop rolls down an inclined plane with
half the acceleration that a frictionless sliding block would have.

?
16 A skateboarder starts at rest nearly at the top of a giant
cylinder, and begins rolling down its side. (If he started exactly at
rest and exactly at the top, he would never get going!) Show that his
board loses contact with the pipe after he has dropped by a height
equal to one third the radius of the pipe. . Solution, p. 557 ?

17 In example 10 on page 86, I remarked that accelerating a
macroscopic (i.e., not microscopic) object to close to the speed of
light would require an unreasonable amount of energy. Suppose that
the starship Enterprise from Star Trek has a mass of 8.0� 107 kg,
about the same as the Queen Elizabeth 2. Compute the kinetic
energy it would have to have if it was moving at half the speed of
light. Compare with the total energy content of the world’s nuclear
arsenals, which is about 1021 J.

p
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18 (a) A free neutron (as opposed to a neutron bound into an
atomic nucleus) is unstable, and undergoes spontaneous radioactive
decay into a proton, an electron, and an antineutrino. The masses
of the particles involved are as follows:

neutron 1.67495� 10� 27 kg
proton 1.67265� 10� 27 kg
electron 0.00091� 10� 27 kg
antineutrino < 10� 35 kg

Find the energy released in the decay of a free neutron.
p

(b) Neutrons and protons make up essentially all of the mass of the
ordinary matter around us. We observe that the universe around us
has no free neutrons, but lots of free protons (the nuclei of hydrogen,
which is the element that 90% of the universe is made of). We �nd
neutrons only inside nuclei along with other neutrons and protons,
not on their own.

If there are processes that can convert neutrons into protons, we
might imagine that there could also be proton-to-neutron conver-
sions, and indeed such a process does occur sometimes in nuclei
that contain both neutrons and protons: a proton can decay into a
neutron, a positron, and a neutrino. A positron is a particle with
the same properties as an electron, except that its electrical charge
is positive. A neutrino, like an antineutrino, has negligible mass.

Although such a process can occur within a nucleus, explain why
it cannot happen to a free proton. (If it could, hydrogen would be
radioactive, and you wouldn’t exist!)

19 A little kid in my neighborhood came home from shopping
with his mother. They live on a hill, with their driveway oriented
perpendicular to the slope. Their minivan was parked in the drive-
way, and while she was bringing groceries inside, he unlocked the
parking brake and put the car in neutral. The steering wheel was
locked with the wheels banked. The car rolled downhill in a circular
arc with the driveway at its top, eventually crashing through the
wall of a neighbor’s living room. (Nobody was hurt.) Suppose the
neighbor’s house hadn’t intervened. The car just rolls freely, and we
want to know whether it will ever skid. Static friction acts between
the asphalt and the tires with coe�cient � s, the radius of the circle
is r , the slope of the hill is � , and the gravitational �eld has strength
g. Find the maximum value of � such that the car will never skid.p

?
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Problem 20.

20 The �gure shows two unequal masses,M and m, connected
by a string running over a pulley. This system was analyzed previ-
ously in problem 20 on p. 196, using Newton’s laws.
(a) Analyze the system using conservation of energy instead. Find
the speed the weights gain after being released from rest and trav-
eling a distanceh.

p

(b) Use your result from part a to �nd the acceleration, reproducing
the result of the earlier problem.

p

21 In 2003, physicist and philosopher John Norton came up with
the following apparent paradox, in which Newton’s laws, which ap-
pear deterministic, can produce nondeterministic results. Suppose
that a bead moves frictionlessly on a curved wire under the inuence
of gravity. The shape of the wire is de�ned by the function y(x),
which passes through the origin, and the bead is released from rest
at the origin. For convenience of notation, choose units such that
g = 1, and de�ne _y = d y=dt and y0 = d y=dx.
(a) Show that the equation of motion is

y = �
1
2

_y2 �
1 + y0� 2�

.

(b) To simplify the calculations, assume from now on that y0 � 1.
Find a shape for the wire such that x = t4 is a solution. (Ignore
units.)

p

(c) Show that not just the motion assumed in part b, but any motion
of the following form is a solution:

x =

(
0 if t � t0

(t � t0)4 if t � t0

This is remarkable because there is no physical principle that deter-
mines t0, so if we place the bead at rest at the origin, there is no
way to predict when it will start moving. ?
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Chapter 13

Work: The Transfer of
Mechanical Energy

13.1 Work: the transfer of mechanical energy
The concept of work

The mass contained in a closed system is a conserved quantity,
but if the system is not closed, we also have ways of measuring the
amount of mass that goes in or out. The water company does this
with a meter that records your water use.

Likewise, we often have a system that is not closed, and would
like to know how much energy comes in or out. Energy, however,
is not a physical substance like water, so energy transfer cannot
be measured with the same kind of meter. How can we tell, for
instance, how much useful energy a tractor can \put out" on one
tank of gas?

The law of conservation of energy guarantees that all the chem-
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a / Work is a transfer of en-
ergy.

b / The tractor raises the weight
over the pulley, increasing its
gravitational potential energy.

c / The tractor accelerates
the trailer, increasing its kinetic
energy.

d / The tractor pulls a plow.
Energy is expended in frictional
heating of the plow and the dirt,
and in breaking dirt clods and
lifting dirt up to the sides of the
furrow.

ical energy in the gasoline will reappear in some form, but not nec-
essarily in a form that is useful for doing farm work. Tractors, like
cars, are extremely ine�cient, and typically 90% of the energy they
consume is converted directly into heat, which is carried away by
the exhaust and the air owing over the radiator. We wish to dis-
tinguish the energy that comes out directly as heat from the energy
that serves to accelerate a trailer or to plow a �eld, so we de�ne
a technical meaning of the ordinary word \work" to express the
distinction:

de�nition of work
Work is the amount of energy transferred into or out of a
system, not counting energy transferred by heat conduction.

self-check A
Based on this de�nition, is work a vector, or a scalar? What are its
units? . Answer, p. 564

The conduction of heat is to be distinguished from heating by
friction. When a hot potato heats up your hands by conduction, the
energy transfer occurs without any force, but when friction heats
your car’s brake shoes, there is a force involved. The transfer of en-
ergy with and without a force are measured by completely di�erent
methods, so we wish to include heat transfer by frictional heating
under the de�nition of work, but not heat transfer by conduction.
The de�nition of work could thus be restated as the amount of en-
ergy transferred by forces.

Calculating work as force multiplied by distance

The examples in �gures b-d show that there are many di�erent
ways in which energy can be transferred. Even so, all these examples
have two things in common:

1. A force is involved.

2. The tractor travels some distance as it does the work.

In b, the increase in the height of the weight, � y, is the same as
the distance the tractor travels, which we’ll call d. For simplicity,
we discuss the case where the tractor raises the weight at constant
speed, so that there is no change in the kinetic energy of the weight,
and we assume that there is negligible friction in the pulley, so that
the force the tractor applies to the rope is the same as the rope’s
upward force on the weight. By Newton’s �rst law, these forces are
also of the same magnitude as the earth’s gravitational force on the
weight. The increase in the weight’s potential energy is given by
F � y, so the work done by the tractor on the weight equalsF d, the
product of the force and the distance moved:

W = F d.
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In example c, the tractor’s force on the trailer accelerates it, increas-
ing its kinetic energy. If frictional forces on the trailer are negligible,
then the increase in the trailer’s kinetic energy can be found using
the same algebra that was used on page 341 to �nd the potential
energy due to gravity. Just as in example b, we have

W = F d.

Does this equation always give the right answer? Well, sort of.
In example d, there are two quantities of work you might want to
calculate: the work done by the tractor on the plow and the work
done by the plow on the dirt. These two quantities can’t both equal
F d. Most of the energy transmitted through the cable goes into
frictional heating of the plow and the dirt. The work done by the
plow on the dirt is less than the work done by the tractor on the
plow, by an amount equal to the heat absorbed by the plow. It turns
out that the equation W = F d gives the work done by the tractor,
not the work done by the plow. How are you supposed to know when
the equation will work and when it won’t? The somewhat complex
answer is postponed until section 13.6. Until then, we will restrict
ourselves to examples in whichW = F d gives the right answer;
essentially the reason the ambiguities come up is that when one
surface is slipping past another,d may be hard to de�ne, because
the two surfaces move di�erent distances.

e / The baseball pitcher put ki-
netic energy into the ball, so he
did work on it. To do the greatest
possible amount of work, he ap-
plied the greatest possible force
over the greatest possible dis-
tance.

We have also been using examples in which the force is in the
same direction as the motion, and the force is constant. (If the force
was not constant, we would have to represent it with a function, not
a symbol that stands for a number.) To summarize, we have:

rule for calculating work (simplest version)
The work done by a force can be calculated as

W = F d,

if the force is constant and in the same direction as the motion.
Some ambiguities are encountered in cases such as kinetic friction.
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f / Example 1.

g / Example 2. Surprisingly,
the climber is in more danger at
1 than at 2. The distance d is
the amount by which the rope
will stretch while work is done to
transfer the kinetic energy of a
fall out of her body.

Mechanical work done in an earthquake example 1
. In 1998, geologists discovered evidence for a big prehistoric
earthquake in Pasadena, between 10,000 and 15,000 years ago.
They found that the two sides of the fault moved 6.7 m relative
to one another, and estimated that the force between them was
1.3 � 1017 N. How much energy was released?

. Multiplying the force by the distance gives 9 � 1017 J. For com-
parison, the Northridge earthquake of 1994, which killed 57 peo-
ple and did 40 billion dollars of damage, released 22 times less
energy.

The fall factor example 2
Counterintuitively, the rock climber may be in more danger in �g-
ure g/1 than later when she gets up to position g/2.

Along her route, the climber has placed removable rock anchors
(not shown) and carabiners attached to the anchors. She clips
the rope into each carabiner so that it can travel but can’t pop out.
In both 1 and 2, she has ascended a certain distance above her
last anchor, so that if she falls, she will drop through a height h
that is about twice this distance, and this fall height is about the
same in both cases. In fact, h is somewhat larger than twice her
height above the last anchor, because the rope is intentionally
designed to stretch under the big force of a falling climber who
suddenly brings it taut.

To see why we want a stretchy rope, consider the equation F =
W=d in the case where d is zero; F would theoretically become
in�nite. In a fall, the climber loses a �xed amount of gravita-
tional energy mgh. This is transformed into an equal amount
of kinetic energy as she falls, and eventually this kinetic energy
has to be transferred out of her body when the rope comes up
taut. If the rope was not stretchy, then the distance traveled at
the point where the rope attaches to her harness would be zero,
and the force exerted would theoretically be in�nite. Before the
rope reached the theoretically in�nite tension F it would break (or
her back would break, or her anchors would be pulled out of the
rock). We want the rope to be stretchy enough to make d fairly
big, so that dividing W by d gives a small force.1

In g/1 and g/2, the fall h is about the same. What is different is the
length L of rope that has been paid out. A longer rope can stretch
more, so the distance d traveled after the �catch� is proportional
to L. Combining F = W=d , W / h, and d / L, we have F / h=L.
For these reasons, rock climbers de�ne a fall factor f = h=L. The
larger fall factor in g/1 is more dangerous.

1Actually F isn’t constant, because the tension in the rope increases steadily
as it stretches, but this is irrelevant to the present analysis.
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Machines can increase force, but not work.

Figure h shows a pulley arrangement for doubling the force sup-
plied by the tractor (book 1, section 5.6). The tension in the left-
hand rope is equal throughout, assuming negligible friction, so there
are two forces pulling the pulley to the left, each equal to the origi-
nal force exerted by the tractor on the rope. This doubled force is
transmitted through the right-hand rope to the stump.

h / The pulley doubles the force
the tractor can exert on the
stump.

It might seem as though this arrangement would also double the
work done by the tractor, but look again. As the tractor moves
forward 2 meters, 1 meter of rope comes around the pulley, and the
pulley moves 1 m to the left. Although the pulley exerts double the
force on the stump, the pulley and stump only move half as far, so
the work done on the stump is no greater that it would have been
without the pulley.

The same is true for any mechanical arrangement that increases
or decreases force, such as the gears on a ten-speed bike. You can’t
get out more work than you put in, because that would violate
conservation of energy. If you shift gears so that your force on the
pedals is ampli�ed, the result is that you just have to spin the pedals
more times.

No work is done without motion.

It strikes most students as nonsensical when they are told that
if they stand still and hold a heavy bag of cement, they are doing
no work on the bag. Even if it makes sense mathematically that
W = F d gives zero whend is zero, it seems to violate common
sense. You would certainly become tired! The solution is simple.
Physicists have taken over the common word \work" and given it a
new technical meaning, which is the transfer of energy. The energy
of the bag of cement is not changing, and that is what the physicist
means by saying no work is done on the bag.

There is a transformation of energy, but it is taking place entirely
within your own muscles, which are converting chemical energy into
heat. Physiologically, a human muscle is not like a tree limb, which
can support a weight inde�nitely without the expenditure of energy.
Each muscle cell’s contraction is generated by zillions of little molec-
ular machines, which take turns supporting the tension. When a
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i / Whenever energy is trans-
ferred out of the spring, the same
amount has to be transferred into
the ball, and vice versa. As the
spring compresses, the ball is
doing positive work on the spring
(giving up its KE and transferring
energy into the spring as PE),
and as it decompresses the ball
is doing negative work (extracting
energy).

particular molecule goes on or o� duty, it moves, and since it moves
while exerting a force, it is doing work. There is work, but it is work
done by one molecule in a muscle cell on another.

Positive and negative work

When object A transfers energy to object B, we say that A
does positive work on B. B is said to do negative work on A. In
other words, a machine like a tractor is de�ned as doing positive
work. This use of the plus and minus signs relates in a logical and
consistent way to their use in indicating the directions of force and
motion in one dimension. In �gure i, suppose we choose a coordinate
system with the x axis pointing to the right. Then the force the
spring exerts on the ball is always a positive number. The ball’s
motion, however, changes directions. The symbold is really just a
shorter way of writing the familiar quantity � x, whose positive and
negative signs indicate direction.

While the ball is moving to the left, we use d < 0 to represent
its direction of motion, and the work done by the spring, F d, comes
out negative. This indicates that the spring is taking kinetic energy
out of the ball, and accepting it in the form of its own potential
energy.

As the ball is reaccelerated to the right, it has d > 0, F d is
positive, and the spring does positive work on the ball. Potential
energy is transferred out of the spring and deposited in the ball as
kinetic energy.

In summary:

rule for calculating work (including cases of negative
work)
The work done by a force can be calculated as

W = F d,

if the force is constant and along the same line as the motion.
The quantity d is to be interpreted as a synonym for � x, i.e.,
positive and negative signs are used to indicate the direction
of motion. Some ambiguities are encountered in cases such as
kinetic friction.

self-check B
In �gure i, what about the work done by the ball on the spring?
. Answer, p. 564

There are many examples where the transfer of energy out of an
object cancels out the transfer of energy in. When the tractor pulls
the plow with a rope, the rope does negative work on the tractor
and positive work on the plow. The total work done by the rope is
zero, which makes sense, since it is not changing its energy.

It may seem that when your arms do negative work by lowering
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j / Left: No mechanical work
occurs in the man’s body while
he holds himself motionless.
There is a transformation of
chemical energy into heat, but
this happens at the microscopic
level inside the tensed muscles.
Right: When the woman lifts
herself, her arms do positive
work on her body, transforming
chemical energy into gravitational
potential energy and heat. On the
way back down, the arms’ work
is negative; gravitational potential
energy is transformed into heat.
(In exercise physiology, the man
is said to be doing isometric
exercise, while the woman’s is
concentric and then eccentric.)

k / Because the force is in
the opposite direction compared
to the motion, the brake shoe
does negative work on the drum,
i.e., accepts energy from it in the
form of heat.

a bag of cement, the cement is not really transferring energy into
your body. If your body was storing potential energy like a com-
pressed spring, you would be able to raise and lower a weight all
day, recycling the same energy. The bag of cement does transfer
energy into your body, but your body accepts it as heat, not as po-
tential energy. The tension in the muscles that control the speed of
the motion also results in the conversion of chemical energy to heat,
for the same physiological reasons discussed previously in the case
where you just hold the bag still.

One of the advantages of electric cars over gasoline-powered cars
is that it is just as easy to put energy back in a battery as it is to
take energy out. When you step on the brakes in a gas car, the brake
shoes do negative work on the rest of the car. The kinetic energy of
the car is transmitted through the brakes and accepted by the brake
shoes in the form of heat. The energy cannot be recovered. Electric
cars, however, are designed to use regenerative braking. The brakes
don’t use friction at all. They are electrical, and when you step on
the brake, the negative work done by the brakes means they accept
the energy and put it in the battery for later use. This is one of the
reasons why an electric car is far better for the environment than a
gas car, even if the ultimate source of the electrical energy happens
to be the burning of oil in the electric company’s plant. The electric
car recycles the same energy over and over, and only dissipates heat
due to air friction and rolling resistance, not braking. (The electric
company’s power plant can also be �tted with expensive pollution-
reduction equipment that would be prohibitively expensive or bulky
for a passenger car.)
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m / A force can do positive,
negative, or zero work, depend-
ing on its direction relative to the
direction of the motion.

Discussion questions

A Besides the presence of a force, what other things differentiate the
processes of frictional heating and heat conduction?

B Criticize the following incorrect statement: �A force doesn’t do any
work unless it’s causing the object to move.�

C To stop your car, you must �rst have time to react, and then it takes
some time for the car to slow down. Both of these times contribute to the
distance you will travel before you can stop. The �gure shows how the
average stopping distance increases with speed. Because the stopping
distance increases more and more rapidly as you go faster, the rule of
one car length per 10 m.p.h. of speed is not conservative enough at high
speeds. In terms of work and kinetic energy, what is the reason for the
more rapid increase at high speeds?

Discussion question C.

13.2 Work in three dimensions

A force perpendicular to the motion does no work.

Suppose work is being done to change an object’s kinetic energy.
A force in the same direction as its motion will speed it up, and a
force in the opposite direction will slow it down. As we have already
seen, this is described as doing positive work or doing negative work
on the object. All the examples discussed up until now have been
of motion in one dimension, but in three dimensions the force can
be at any angle � with respect to the direction of motion.

What if the force is perpendicular to the direction of motion? We
have already seen that a force perpendicular to the motion results
in circular motion at constant speed. The kinetic energy does not
change, and we conclude that no work is done when the force is
perpendicular to the motion.

So far we have been reasoning about the case of a single force
acting on an object, and changing only its kinetic energy. The result
is more generally true, however. For instance, imagine a hockey puck
sliding across the ice. The ice makes an upward normal force, but
does not transfer energy to or from the puck.
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n / Work is only done by the
component of the force parallel to
the motion.

o / Self-check. (Breaking Trail, by
Walter E. Bohl.)

Forces at other angles

Suppose the force is at some other angle with respect to the
motion, say � = 45 � . Such a force could be broken down into two
components, one along the direction of the motion and the other
perpendicular to it. The force vector equals the vector sum of its
two components, and the principle of vector addition of forces thus
tells us that the work done by the total force cannot be any di�erent
than the sum of the works that would be done by the two forces by
themselves. Since the component perpendicular to the motion does
no work, the work done by the force must be

W = Fk jd j, [work done by a constant force]

where the vectord is simply a less cumbersome version of the nota-
tion � r . This result can be rewritten via trigonometry as

W = jF jjd j cos� . [work done by a constant force]

Even though this equation has vectors in it, it depends only on
their magnitudes, and the magnitude of a vector is a scalar. Work
is therefore still a scalar quantity, which only makes sense if it is
de�ned as the transfer of energy. Ten gallons of gasoline have the
ability to do a certain amount of mechanical work, and when you
pull in to a full-service gas station you don’t have to say \Fill ’er up
with 10 gallons of south-going gas."

Students often wonder why this equation involves a cosine rather
than a sine, or ask if it would ever be a sine. In vector addition, the
treatment of sines and cosines seemed more equal and democratic,
so why is the cosine so special now? The answer is that if we are
going to describe, say, a velocity vector, we must give both the
component parallel to the x axis and the componentperpendicular
to the x axis (i.e., the y component). In calculating work, however,
the force component perpendicular to the motion is irrelevant | it
changes the direction of motion without increasing or decreasing the
energy of the object on which it acts. In this context, it is only the
parallel force component that matters, so only the cosine occurs.

self-check C
(a) Work is the transfer of energy. According to this de�nition, is the
horse in the picture doing work on the pack? (b) If you calculate work
by the method described in this section, is the horse in �gure o doing
work on the pack? . Answer, p. 564

Pushing a broom example 3
. If you exert a force of 21 N on a push broom, at an angle 35
degrees below horizontal, and walk for 5.0 m, how much work do
you do? What is the physical signi�cance of this quantity of work?

. Using the second equation above, the work done equals

(21 N)(5.0 m)(cos 35� ) = 86 J.
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The form of energy being transferred is heat in the �oor and the
broom’s bristles. This comes from the chemical energy stored in
your body. (The majority of the calories you burn are dissipated
directly as heat inside your body rather than doing any work on
the broom. The 86 J is only the amount of energy transferred
through the broom’s handle.)

A violin example 4
As a violinist draws the bow across a string, the bow hairs exert
both a normal force and a kinetic frictional force on the string. The
normal force is perpendicular to the direction of motion, and does
no work. However, the frictional force is in the same direction as
the motion of the bow, so it does work: energy is transferred to
the string, causing it to vibrate.

One way of playing a violin more loudly is to use longer strokes.
Since W = Fd , the greater distance results in more work.

A second way of getting a louder sound is to press the bow more
�rmly against the strings. This increases the normal force, and
although the normal force itself does no work, an increase in the
normal force has the side effect of increasing the frictional force,
thereby increasing W = Fd .

The violinist moves the bow back and forth, and sound is pro-
duced on both the �up-bow� (the stroke toward the player’s left)
and the �down-bow� (to the right). One may, for example, play a
series of notes in alternation between up-bows and down-bows.
However, if the notes are of unequal length, the up and down mo-
tions tend to be unequal, and if the player is not careful, she can
run out of bow in the middle of a note! To keep this from hap-
pening, one can move the bow more quickly on the shorter notes,
but the resulting increase in d will make the shorter notes louder
than they should be. A skilled player compensates by reducing
the force.

13.3 The dot product
Up until now, we have not found any physically useful way to de�ne
the multiplication of two vectors. It would be possible, for instance,
to multiply two vectors component by component to form a third
vector, but there are no physical situations where such a multipli-
cation would be useful.

The equation W = jF jjd j cos� is an example of a sort of mul-
tiplication of vectors that is useful. The result is a scalar, not a
vector, and this is therefore often referred to as thescalar product
of the vectors F and d. There is a standard shorthand notation for
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this operation,

A � B = jA jjB j cos� , [de�nition of the notation A � B ;
� is the angle between vectorsA and B ]

and because of this notation, a more common term for this operation
is the dot product. In dot product notation, the equation for work
is simply

W = F � d.

The dot product has the following geometric interpretation:

A � B = jA j(component of B parallel to A )
= jB j(component of A parallel to B )

The dot product has some of the properties possessed by ordinary
multiplication of numbers,

A � B = B � A
A � (B + C ) = A � B + A � C

(cA ) � B = c(A � B ) ,

but it lacks one other: the ability to undo multiplication by dividing.

If you know the components of two vectors, you can easily cal-
culate their dot product as follows:

A � B = AxBx + AyBy + AzBz.

(This can be proved by �rst analyzing the special case where each
vector has only anx component, and the similar cases fory and z.
We can then use the ruleA � (B + C ) = A � B + A � C to make a
generalization by writing each vector as the sum of itsx, y, and z
components. See homework problem 23.)

Magnitude expressed with a dot product example 5
If we take the dot product of any vector b with itself, we �nd

b � b =
�
bx �x + by �y + bz �z

�
�
�
bx �x + by �y + bz �z

�

= b2
x + b2

y + b2
z ,

so its magnitude can be expressed as

jbj =
p

b � b.

We will often write b2 to mean b � b, when the context makes
it clear what is intended. For example, we could express kinetic
energy as (1/2)mjvj2, (1/2)mv �v, or (1/2)mv2. In the third version,
nothing but context tells us that v really stands for the magnitude
of some vector v.
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p / The spring does work on
the cart. (Unlike the ball in
section 13.1, the cart is attached
to the spring.)

Towing a barge example 6
. A mule pulls a barge with a force F=(1100 N)�x + (400 N)�y, and
the total distance it travels is (1000 m)�x. How much work does it
do?

. The dot product is 1.1 � 106 N�m = 1.1 � 106 J.

13.4 Varying force
Up until now we have done no actual calculations of work in cases
where the force was not constant. The question of how to treat
such cases is mathematically analogous to the issue of how to gener-
alize the equation (distance) = (velocity)(time) to cases where the
velocity was not constant. We have to make the equation into an
integral:

W =
Z

F dx

The examples in this section are ones in which the force is varying,
but is always along the same line as the motion.

self-check D
In which of the following examples would it be OK to calculate work
using Fd , and in which ones would you have to integrate?

(a) A �shing boat cruises with a net dragging behind it.

(b) A magnet leaps onto a refrigerator from a distance.

(c) Earth’s gravity does work on an outward-bound space probe. .
Answer, p. 564

Work done by a spring example 7
An important and straightforward example is the calculation of the
work done by a spring that obeys Hooke’s law,

F � � k (x � xo),

where xo is the equilibrium position and the minus sign is because
this is the force being exerted by the spring, not the force that
would have to act on the spring to keep it at this position. That is,
if the position of the cart in �gure p is to the right of equilibrium,
the spring pulls back to the left, and vice-versa. Integrating, we
�nd that the work done between x1 and x2 is

W = �
1
2

k (x � xo)2
����
x2

x1

.

Work done by gravity example 8
Another important example is the work done by gravity when the
change in height is not small enough to assume a constant force.
Newton’s law of gravity is

F =
GMm

r2 ,
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which can be integrated to give

W =
Z r2

r1

GMm
r2 dr

= � GMm
�

1
r2

�
1
r1

�
.

13.5 Work and potential energy
The techniques for calculating work can also be applied to the cal-
culation of potential energy. If a certain force depends only on
the distance between the two participating objects, then the energy
released by changing the distance between them is de�ned as the po-
tential energy, and the amount of potential energy lost equals minus
the work done by the force,

� P E = � W .

The minus sign occurs because positive work indicates that the po-
tential energy is being expended and converted to some other form.

It is sometimes convenient to pick some arbitrary position as a
reference position, and derive an equation for once and for all that
gives the potential energy relative to this position

P Ex = � Wref! x . [potential energy at a point x]

To �nd the energy transferred into or out of potential energy, one
then subtracts two di�erent values of this equation.

These equations might almost make it look as though work and
energy were the same thing, but they are not. First, potential energy
measures the energy that a systemhas stored in it, while work
measures how much energy istransferred in or out. Second, the
techniques for calculating work can be used to �nd the amount of
energy transferred in many situations where there is no potential
energy involved, as when we calculate the amount of kinetic energy
transformed into heat by a car’s brake shoes.

A toy gun example 9
. A toy gun uses a spring with a spring constant of 10 N/m to
shoot a ping-pong ball of mass 5 g. The spring is compressed to
10 cm shorter than its equilibrium length when the gun is loaded.
At what speed is the ball released?

. The equilibrium point is the natural choice for a reference point.
Using the equation found previously for the work, we have

PEx =
1
2

k (x � xo)2 .
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q / Example 10, gravitational
potential energy as a function of
distance.

The spring loses contact with the ball at the equilibrium point, so
the �nal potential energy is

PEf = 0.

The initial potential energy is

PEi =
1
2

(10 N=m)(0.10 m)2.

= 0.05 J.

The loss in potential energy of 0.05 J means an increase in kinetic
energy of the same amount. The velocity of the ball is found by
solving the equation K E = (1=2)mv2 for v ,

v =

r
2K E

m

=

s
(2)(0.05 J)
0.005 kg

= 4 m=s.

Gravitational potential energy example 10
. We have already found the equation � PE = � F � y for the

gravitational potential energy when the change in height is not
enough to cause a signi�cant change in the gravitational force F .
What if the change in height is enough so that this assumption
is no longer valid? Use the equation W = GMm(1=r2 � 1=r1)
derived in example 8 to �nd the potential energy, using r = 1 as
a reference point.

. The potential energy equals minus the work that would have to
be done to bring the object from r1 = 1 to r = r2, which is

PE = �
GMm

r
.

This is simpler than the equation for the work, which is an exam-
ple of why it is advantageous to record an equation for potential
energy relative to some reference point, rather than an equation
for work.

Although the equations derived in the previous two examples
may seem arcane and not particularly useful except for toy design-
ers and rocket scientists, their usefulness is actually greater than
it appears. The equation for the potential energy of a spring can
be adapted to any other case in which an object is compressed,
stretched, twisted, or bent. While you are not likely to use the
equation for gravitational potential energy for anything practical, it
is directly analogous to an equation that is extremely useful in chem-
istry, which is the equation for the potential energy of an electron
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at a distance r from the nucleus of its atom. As discussed in more
detail later in the course, the electrical force between the electron
and the nucleus is proportional to 1=r2, just like the gravitational
force between two masses. Since the equation for the force is of the
same form, so is the equation for the potential energy.

r / The twin Voyager space probes
were perhaps the greatest scien-
ti�c successes of the space pro-
gram. Over a period of decades,
they �ew by all the planets of the
outer solar system, probably ac-
complishing more of scienti�c in-
terest than the entire space shut-
tle program at a tiny fraction of
the cost. Both Voyager probes
completed their �nal planetary �y-
bys with speeds greater than the
escape velocity at that distance
from the sun, and so headed on
out of the solar system on hyper-
bolic orbits, never to return. Ra-
dio contact has been lost, and
they are now likely to travel inter-
stellar space for billions of years
without colliding with anything or
being detected by any intelligent
species.

Discussion questions

A What does the graph of PE = (1=2)k (x � xo)2 look like as a function
of x? Discuss the physical signi�cance of its features.

B What does the graph of PE = � GMm=r look like as a function of r?
Discuss the physical signi�cance of its features. How would the equation
and graph change if some other reference point was chosen rather than
r = 1 ?

C Starting at a distance r from a planet of mass M, how fast must an
object be moving in order to have a hyperbolic orbit, i.e., one that never
comes back to the planet? This velocity is called the escape velocity. In-
terpreting the result, does it matter in what direction the velocity is? Does
it matter what mass the object has? Does the object escape because it is
moving too fast for gravity to act on it?

D Does a spring have an �escape velocity?�

E If the form of energy being transferred is potential energy, then the
equations F = dW=dx and W =

R
F dx become F = � dPE=dx and

PE = �
R

F dx . How would you then apply the following calculus con-
cepts: zero derivative at minima and maxima, and the second derivative
test for concavity up or down.

Section 13.5 Work and potential energy 373



The work-KE theorem

Proof

For simplicity, we have assumed
Ftotal to be constant, and therefore
acm = Ftotal=m is also constant, and
the constant-acceleration equation

v2
cm,f = v2

cm,i + 2acm� xcm

applies. Multiplying by m=2 on both
sides and applying Newton’s sec-
ond law gives

K E2
cm,f = K E2

cm,i + Ftotal� xcm,

which is the result that was to be
proved.

Further interpretation

The logical structure of this book
is that although Newton’s laws are
discussed before conservation laws,
the conservation laws are taken
to be fundamental, since they are
true even in cases where Newton’s
laws fail. Many treatments of this
subject present the work-KE the-
orem as a proof that kinetic en-
ergy behaves as (1=2)mv2. This
is a matter of taste, but one can
just as well rearrange the equa-
tions in the proof above to solve
for the unknown acm and prove New-
ton’s second law as a consequence
of conservation of energy. Ultimately
we have a great deal of freedom
in choosing which equations to take
as de�nitions, which to take as em-
pirically veri�ed laws of nature, and
which to take as theorems.

Regardless of how we slice things,
we require both mathematical con-
sistency and consistency with ex-
periment. As described on p. 321,
the work-KE theorem is an impor-
tant part of this interlocking sys-
tem of relationships.

13.6 ? When does work equal force times
distance?

In the example of the tractor pulling the plow discussed on page
361, the work did not equal F d. The purpose of this section is to
explain more fully how the quantity F d can and cannot be used.
To simplify things, I write F d throughout this section, but more
generally everything said here would be true for the area under the
graph of Fk versusd.

The following two theorems allow most of the ambiguity to be
cleared up.

the work-kinetic-energy theorem
The change in kinetic energy associated with the motion of an
object’s center of mass is related to the total force acting on
it and to the distance traveled by its center of mass according
to the equation � KE cm = Ftotal dcm .

A proof is given in the sidebar, along with some interpretation
of how this result relates to the logical structure of our presentation.
Note that despite the traditional name, it does not necessarily tell
the amount of work done, since the forces acting on the object could
be changing other types of energy besides the KE associated with
its center of mass motion.

The second theorem does relate directly to work:

When a contact force acts between two objects and the two
surfaces do not slip past each other, the work done equalsF d,
where d is the distance traveled by the point of contact.

This one has no generally accepted name, so we refer to it simply
as the second theorem.

A great number of physical situations can be analyzed with these
two theorems, and often it is advantageous to apply both of them
to the same situation.

An ice skater pushing off from a wall example 11
The work-kinetic energy theorem tells us how to calculate the
skater’s kinetic energy if we know the amount of force and the
distance her center of mass travels while she is pushing off.

The second theorem tells us that the wall does no work on the
skater. This makes sense, since the wall does not have any
source of energy.

Absorbing an impact without recoiling? example 12
. Is it possible to absorb an impact without recoiling? For in-
stance, would a brick wall �give� at all if hit by a ping-pong ball?

. There will always be a recoil. In the example proposed, the wall
will surely have some energy transferred to it in the form of heat

374 Chapter 13 Work: The Transfer of Mechanical Energy



and vibration. The second theorem tells us that we can only have
nonzero work if the distance traveled by the point of contact is
nonzero.

Dragging a refrigerator at constant velocity example 13
Newton’s �rst law tells us that the total force on the refrigerator
must be zero: your force is canceling the �oor’s kinetic frictional
force. The work-kinetic energy theorem is therefore true but use-
less. It tells us that there is zero total force on the refrigerator,
and that the refrigerator’s kinetic energy doesn’t change.

The second theorem tells us that the work you do equals your
hand’s force on the refrigerator multiplied by the distance traveled.
Since we know the �oor has no source of energy, the only way for
the �oor and refrigerator to gain energy is from the work you do.
We can thus calculate the total heat dissipated by friction in the
refrigerator and the �oor.

Note that there is no way to �nd how much of the heat is dissi-
pated in the �oor and how much in the refrigerator.

Accelerating a cart example 14
If you push on a cart and accelerate it, there are two forces acting
on the cart: your hand’s force, and the static frictional force of the
ground pushing on the wheels in the opposite direction.

Applying the second theorem to your force tells us how to calcu-
late the work you do.

Applying the second theorem to the �oor’s force tells us that the
�oor does no work on the cart. There is no motion at the point
of contact, because the atoms in the �oor are not moving. (The
atoms in the surface of the wheel are also momentarily at rest
when they touch the �oor.) This makes sense, since the �oor
does not have any source of energy.

The work-kinetic energy theorem refers to the total force, and be-
cause the �oor’s backward force cancels part of your force, the
total force is less than your force. This tells us that only part of
your work goes into the kinetic energy associated with the forward
motion of the cart’s center of mass. The rest goes into rotation of
the wheels.

13.7 ? Uniqueness of the dot product
In this section I prove that the vector dot product is unique, in
the sense that there is no other possible way to de�ne it that is
consistent with rotational invariance and that reduces appropriately
to ordinary multiplication in one dimension.

Suppose we want to �nd some way to multiply two vectors to get
a scalar, and we don’t know how this operation should be de�ned.
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Let’s consider what we would get by performing this operation on
various combinations of the unit vectors x̂ , ŷ , and ẑ. Rotational
invariance requires that we handle the three coordinate axes in the
same way, without giving special treatment to any of them, so we
must have x̂ � x̂ = ŷ � ŷ = ẑ � ẑ and x̂ � ŷ = ŷ � ẑ = ẑ � x̂ . This is
supposed to be a way of generalizing ordinary multiplication, so for
consistency with the property 1 � 1 = 1 of ordinary numbers, the
result of multiplying a magnitude-one vector by itself had better be
the scalar 1, sox̂ � x̂ = ŷ � ŷ = ẑ � ẑ = 1. Furthermore, there is no way
to satisfy rotational invariance unless we de�ne the mixed products
to be zero,x̂ � ŷ = ŷ � ẑ = ẑ � x̂ = 0; for example, a 90-degree rotation
of our frame of reference about thez axis reverses the sign of̂x � ŷ ,
but rotational invariance requires that x̂ � ŷ produce the same result
either way, and zero is the only number that stays the same when
we reverse its sign. Establishing these six products of unit vectors
su�ces to de�ne the operation in general, since any two vectors
that we want to multiply can be broken down into components, e.g.,
(2x̂ +3 ẑ) � ẑ = 2 x̂ � ẑ+3 ẑ � ẑ = 0+3 = 3. Thus by requiring rotational
invariance and consistency with multiplication of ordinary numbers,
we �nd that there is only one possible way to de�ne a multiplication
operation on two vectors that gives a scalar as the result. (There
is, however, a di�erent operation, discussed in chapter 15, which
multiplies two vectors to give a vector.)

13.8 ? A dot product for relativity?
In section 13.7 I showed that the dot product is the only physi-
cally sensible way to multiply two vectors to get a scalar. This is
essentially because the outcome of experiments shouldn’t depend
on which way we rotate the laboratory. Dot products relate to the
lengths of vectors and the angles between them, and rotations don’t
change lengths or angles.

Let’s consider how this would apply to relativity. Relativity
tells us that the length of a measuring rod isnot absolute. Rotating
the lab won’t change its length, but changing the lab’s state of
motion will. The rod’s length is greatest in the frame that is at
rest relative to the rod. This suggests that relativity requires some
new variation on the dot product: some slightly di�erent way of
multiplying two vectors to �nd a number that doesn’t depend on
the frame of reference.

Clock time

We do know of a number that stays the same in all frames of
reference. In �gure am on p. 83, we proved that the Lorentz trans-
formation doesn’t change the area of a shape in thex-t plane. We
used this only as a stepping stone toward the Lorentz transforma-
tion, but it is natural to wonder whether this kind of area has any
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physical interest of its own.

The equal-area result is not relativistic, since the proof never
appeals to property 5 on page 79. Cases I and II on page 82 also
have the equal-area property. We can see this clearly in a Galilean
transformation like �gure ag on p. 80, where the distortion of the
rectangle could be accomplished by cutting it into vertical slices and
then displacing the slices upward without changing their areas.

But the area does have a nice interpretation in the relativistic
case. Suppose that we have events A (Charles VII is restored to
the throne) and B (Joan of Arc is executed). Now imagine that
technologically advanced aliens want to be present at both A and
B, but in the interim they wish to y away in their spaceship, be
present at some other event P (perhaps a news conference at which
they give an update on the events taking place on earth), but get
back in time for B. Since nothing can go faster thanc (which we
take to equal 1 in appropriate units), P cannot be too far away. The
set of all possible events P forms a rectangle, �gure s/1, in thex � t
plane that has A and B at opposite corners and whose edges have
slopes equal to� 1. We call this type of rectangle a light-rectangle,
because its sides could represent the motion of rays of light.

s / 1. The gray light-rectangle rep-
resents the set of all events such
as P that could be visited after A
and before B.
2. The rectangle becomes a
square in the frame in which A
and B occur at the same location
in space.
3. The area of the dashed square
is � 2, so the area of the gray
square is � 2=2.The area of this rectangle will be the same regardless of one’s

frame of reference. In particular, we could choose a special frame
of reference, panel 2 of the �gure, such that A and B occur in the
same place. (They do not occur at the same place, for example,
in the sun’s frame, because the earth is spinning and going around
the sun.) Since the speedc, which equals 1 in our units, is the
same in all frames of reference, and the sides of the rectangle had
slopes� 1 in frame 1, they must still have slopes� 1 in frame 2. The
rectangle becomes a square with its diagonals parallel to thex and
t axes, and the length of these diagonals equals the time� elapsed
on a clock that is at rest in frame 2, i.e., a clock that glides through
space at constant velocity from A to B, meeting up with the planet
earth at the appointed time. As shown in panel 3 of the �gure, the
area of the gray regions can be interpreted as half the square of this
gliding-clock time.

If events A and B are separated by a distancex and a time t, then
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in general t2 � x2 gives the square of the gliding-clock time. Proof:
Based on units, the expression must have the form (: : :)t2+( : : :)tx +
(: : :)x2, where each (: : :) represents a unitless constant. Thetx
coe�cient must be zero by property 2 on p. 79. For consistency with
�gure s/3, the t2 coe�cient must equal 1. Since the area vanishes
for x = t, the x2 coe�cient must equal � 1.

When jx j is greater than jt j, events A and B are so far apart in
space and so close together in time that it would be impossible to
have a cause and e�ect relationship between them, sincec = 1 is
the maximum speed of cause and e�ect. In this situation t2 � x2

is negative and cannot be interpreted as a clock time, but it can
be interpreted as minus the square of the distance between A and
B as measured by rulers at rest in a frame in which A and B are
simultaneous.

Four-vectors

No matter what, t2 � x2 is the same as measured in all frames
of reference. Geometrically, it plays the same role in thex-t plane
that ruler measurements play in the Euclidean plane. In Euclidean
geometry, the ruler-distance between any two points stays the same
regardless of rotation, i.e., regardless of the angle from which we
view the scene; according to the Pythagorean theorem, the square
of this distance is x2 + y2. In the x-t plane, t2 � x2 stays the same
regardless of the frame of reference. This suggests that by analogy
with the dot product

x1x2 + y1y2

in the Euclidean x-y plane, we de�ne a similar operation in the x-t
plane,

t1t2 � x1x2.

Putting in the other two spatial dimensions, we have

t1t2 � x1x2 � y1y2 � z1z2.

A mathematical object like ( t, x, y, z) is referred to as a four-vector,
as opposed to a three-vector like (x, y, z). The term \dot product"
has connotations of referring only to three-vectors, so the operation
of taking the scalar product of two four-vectors is usually referred to
instead as the \inner product." There are various ways of notating
the inner product of vectors a and b, such asa � b or < a, b > .

The magnitude of a three-vector is de�ned by taking the square
root of its dot product with itself, and this square root is always
a real number, because a vector’s dot product with itself is always
positive. But the inner product of a four-vector with itself can be
positive, zero, or negative, and in these cases the vector is referred to
as timelike, lightlike, spacelike, respectively. Since material objects
can never go as fast asc, the vector (� t, � x, � y, � z) describing an
object’s motion from one event to another is always timelike.
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The twin paradox example 15
One of the classic paradoxes of relativity, known as the twin para-
dox, is usually stated something like this. Alice and Betty are iden-
tical twins. Betty goes on a space voyage at relativistic speeds,
traveling away from the earth and then turning around and com-
ing back. Meanwhile, Alice stays on earth. When Betty returns,
she is younger than Alice because of relativistic time dilation. But
isn’t it valid to say that Betty’s spaceship is standing still and the
earth moving? In that description, wouldn’t Alice end up younger
and Betty older?

The most common way of explaining the non-paradoxical nature
of this paradox is that although special relativity says that inertial
motion is relative, it doesn’t say that noninertial motion is relative.
In this respect it is the same as Newtonian mechanics. Betty ex-
periences accelerations on her voyage, but Alice doesn’t. There-
fore there is no doubt about who actually went on the trip and who
didn’t.

This resolution, however, may not be entirely satisfying because it
makes it sound as if relativistic time dilation is not occurring while
Betty’s ship cruises at constant velocity, but only while the ship is
speeding up or slowing down. This would appear to contradict our
earlier interpretation of relativistic time dilation, which was that
a clock runs fastest according to an observer at rest relative to
the clock. Furthermore, if it’s acceleration that causes the effect,
should we be looking for some new formula that computes time
dilation based on acceleration?

The �rst thing to realize is that there is no unambiguous way to
decide during which part of Betty’s journey the time dilation is
occurring. To do this, we could need to be able to compare Alice
and Betty’s clocks many times over the course of the trip. But
neither twin has any way of �nding out what her sister’s clock
reads �now,� except by exchanging radio signals, which travel at
the speed of light. The speed-of-light lag vanishes only at the
beginning and end of the trip, when the twins are in the same
place.

Furthermore, we can use the inner product to show that the ac-
cumulated difference in clock time doesn’t depend on the details
of how Betty carries out her accelerations and decelerations. In
fact, we can get the right answer simply by assuming that these
changes in velocities occur instantaneously.

In Euclidean geometry, the triangle inequality jb + cj < jbj + jcj
follows from

(jbj + jcj)2 � (b + c) � (b + c) = 2(jbjjcj � b � c) � 0.

The reason this quantity always comes out positive is that for two
vectors of �xed magnitude, the greatest dot product is always
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achieved in the case where they lie along the same direction.

In the geometry of the x-t plane, the situation is different. Sup-
pose that b and c are timelike vectors, so that they represent
possible (� t , � x , : : :) vectors for Betty on the outward and return
legs of her trip. Then a = b +c describes the vector for Alice’s mo-
tion. Alice goes by a direct route through the x-t plane while Betty
takes a detour. The magnitude of each timelike vector represents
the time elapsed on a clock carried by that twin. The triangle
equality is now reversed, becoming jb + cj > jbj + jcj. The differ-
ence from the Euclidean case arises because inner products are
no longer necessarily maximized if vectors are in the same direc-
tion. E.g., for two lightlike vectors, b � c vanishes entirely if b and
c are parallel. For timelike vectors, parallelism actually minimizes
the inner product rather than maximizing it.2

2Proof: Let b and c be parallel and timelike, and directed forward in time.
Adopt a frame of reference in which every spatial component of each vector
vanishes. This entails no loss of generality, since inner products are invariant
under such a transformation. Now let b and c be pulled away from parallelism,
like opening a pair of scissors in thex � t plane. This reducesbtct , while causing
bx cx to become negative. Both e�ects increase the inner product.
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Summary
Selected vocabulary
work . . . . . . . . the amount of energy transferred into or out

of a system, excluding energy transferred by
heat conduction

Notation
W . . . . . . . . . work

Summary

Work is a measure of the transfer of mechanical energy, i.e., the
transfer of energy by a force rather than by heat conduction. When
the force is constant, work can usually be calculated as

W = Fk jd j, [only if the force is constant]

where d is simply a less cumbersome notation for �r , the vector
from the initial position to the �nal position. Thus,

� A force in the same direction as the motion does positive work,
i.e., transfers energy into the object on which it acts.

� A force in the opposite direction compared to the motion does
negative work, i.e., transfers energy out of the object on which
it acts.

� When there is no motion, no mechanical work is done. The
human body burns calories when it exerts a force without
moving, but this is an internal energy transfer of energy within
the body, and thus does not fall within the scienti�c de�nition
of work.

� A force perpendicular to the motion does no work.

When the force is not constant, the above equation should be gen-
eralized as an integral,

R
Fk dx.

There is only one meaningful (rotationally invariant) way of
de�ning a multiplication of vectors whose result is a scalar, and
it is known as the vector dot product:

b � c = bxcx + bycy + bzcz

= jb j jcj cos� bc.

The dot product has most of the usual properties associated with
multiplication, except that there is no \dot division." The dot prod-
uct can be used to compute mechanical work asW = F � d.

Machines such as pulleys, levers, and gears may increase or de-
crease a force, but they can never increase or decrease the amount
of work done. That would violate conservation of energy unless the
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machine had some source of stored energy or some way to accept
and store up energy.

There are some situations in which the equationW = Fk jd j is
ambiguous or not true, and these issues are discussed rigorously in
section 13.6. However, problems can usually be avoided by analyzing
the types of energy being transferred before plunging into the math.
In any case there is no substitute for a physical understanding of
the processes involved.

The techniques developed for calculating work can also be ap-
plied to the calculation of potential energy. We �x some position
as a reference position, and calculate the potential energy for some
other position, x, as

P Ex = � Wref! x .

The following two equations for potential energy have broader
signi�cance than might be suspected based on the limited situations
in which they were derived:

P E =
1
2

k (x � xo)2 .

[potential energy of a spring having spring constant
k, when stretched or compressed from the equilibrium
position xo; analogous equations apply for the twisting,
bending, compression, or stretching of any object.]

P E = �
GMm

r
[gravitational potential energy of objects of massesM

and m, separated by a distancer ; an analogous equation
applies to the electrical potential energy of an electron
in an atom.]
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A bull paws the ground, as
in problem 2.

Problems
Keyp

A computerized answer check is available online.R
A problem that requires calculus.

? A di�cult problem.

1 Two speedboats are identical, but one has more people aboard
than the other. Although the total masses of the two boats are
unequal, suppose that they happen to have the same kinetic energy.
In a boat, as in a car, it’s important to be able to stop in time to
avoid hitting things. (a) If the frictional force from the water is the
same in both cases, how will the boats’ stopping distances compare?
Explain. (b) Compare the times required for the boats to stop.

2 In each of the following situations, is the work being done
positive, negative, or zero? (a) a bull paws the ground; (b) a �shing
boat pulls a net through the water behind it; (c) the water resists
the motion of the net through it; (d) you stand behind a pickup
truck and lower a bale of hay from the truck’s bed to the ground.
Explain. [Based on a problem by Serway and Faughn.]

3 (a) Suppose work is done in one-dimensional motion. What
happens to the work if you reverse the direction of the positive
coordinate axis? Base your answer directly on the de�nition of work.
(b) Now answer the question based on theW = F d rule.

4 Does it make sense to say that work is conserved?
. Solution, p. 558

5 A microwave oven works by twisting molecules one way and
then the other, counterclockwise and then clockwise about their own
centers, millions of times a second. If you put an ice cube or a stick
of butter in a microwave, you’ll observe that the solid doesn’t heat
very quickly, although eventually melting begins in one small spot.
Once this spot forms, it grows rapidly, while the rest of the solid
remains solid; it appears that a microwave oven heats a liquid much
more rapidly than a solid. Explain why this should happen, based
on the atomic-level description of heat, solids, and liquids. (See,
e.g., �gure b on page 339.)

Don’t repeat the following common mistakes:

In a solid, the atoms are packed more tightly and have less space
between them. Not true. Ice oats because it’s less dense than
water.

In a liquid, the atoms are moving much faster.No, the di�erence in
average speed between ice at� 1� C and water at 1� C is only 0.4%.
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Problem 6.

Problem 7: A cylinder from
the 1965 Rambler’s engine. The
piston is shown in its pushed out
position. The two bulges at the
top are for the valves that let fresh
air-gas mixture in. Based on a
�gure from Motor Service’s Au-
tomotive Encyclopedia, Toboldt
and Purvis.

6 Most modern bow hunters in the U.S. use a fancy mechanical
bow called a compound bow, which looks nothing like what most
people imagine when they think of a bow and arrow. It has a system
of pulleys designed to produce the force curve shown in the �gure,
where F is the force required to pull the string back, and x is the
distance between the string and the center of the bow’s body. It is
not a linear Hooke’s-law graph, as it would be for an old-fashioned
bow. The big advantage of the design is that relatively little force
is required to hold the bow stretched to point B on the graph. This
is the force required from the hunter in order to hold the bow ready
while waiting for a shot. Since it may be necessary to wait a long
time, this force can’t be too big. An old-fashioned bow, designed
to require the same amount of force when fully drawn, would shoot
arrows at much lower speeds, since its graph would be a straight line
from A to B. For the graph shown in the �gure (taken from realistic
data), �nd the speed at which a 26 g arrow is released, assuming that
70% of the mechanical work done by the hand is actually transmitted
to the arrow. (The other 30% is lost to frictional heating inside the
bow and kinetic energy of the recoiling and vibrating bow.)

p

7 In the power stroke of a car’s gasoline engine, the fuel-air
mixture is ignited by the spark plug, explodes, and pushes the piston
out. The exploding mixture’s force on the piston head is greatest
at the beginning of the explosion, and decreases as the mixture
expands. It can be approximated by F = a=x, where x is the
distance from the cylinder to the piston head, anda is a constant
with units of N �m. (Actually a=x1.4 would be more accurate, but
the problem works out more nicely with a=x!) The piston begins its
stroke at x = x1, and ends atx = x2.
(a) Find the amount of work done in one stroke by one cylinder.

p

(b) The 1965 Rambler had six cylinders, each witha = 220 N �m,
x1 = 1.2 cm, and x2 = 10.2 cm. Assume the engine is running at
4800 r.p.m., so that during one minute, each of the six cylinders
performs 2400 power strokes. (Power strokes only happen every
other revolution.) Find the engine’s power, in units of horsepower
(1 hp=746 W).

p

(c) The compression ratio of an engine is de�ned asx2=x1. Explain
in words why the car’s power would be exactly the same ifx1 and
x2 were, say, halved or tripled, maintaining the same compression
ratio of 8.5. Explain why this would not quite be true with the more
realistic force equationF = a=x1.4.
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Problem 8.

8 The �gure, redrawn from Gray’s Anatomy, shows the tension
of which a muscle is capable. The variablex is de�ned as the con-
traction of the muscle from its maximum length L , so that at x = 0
the muscle has lengthL , and at x = L the muscle would theoreti-
cally have zero length. In reality, the muscle can only contract to
x = cL, where c is less than 1. When the muscle is extended to its
maximum length, at x = 0, it is capable of the greatest tension,To.
As the muscle contracts, however, it becomes weaker. Gray suggests
approximating this function as a linear decrease, which would theo-
retically extrapolate to zero at x = L . (a) Find the maximum work
the muscle can do in one contraction, in terms ofc, L , and To.

p

(b) Show that your answer to part a has the right units.
(c) Show that your answer to part a has the right behavior when
c = 0 and when c = 1.
(d) Gray also states that the absolute maximum tension To has
been found to be approximately proportional to the muscle’s cross-
sectional areaA (which is presumably measured atx = 0), with
proportionality constant k. Approximating the muscle as a cylin-
der, show that your answer from part a can be reexpressed in terms
of the volume, V , eliminating L and A.

p

(e) Evaluate your result numerically for a biceps muscle with a vol-
ume of 200 cm3, with c = 0.8 and k = 100 N=cm2 as estimated by
Gray.

p

9 In the earth’s atmosphere, the molecules are constantly moving
around. Because temperature is a measure of kinetic energy per
molecule, the average kinetic energy of each type of molecule is the
same, e.g., the average KE of the O2 molecules is the same as the
average KE of the N2 molecules. (a) If the mass of an O2 molecule
is eight times greater than that of a He atom, what is the ratio of
their average speeds? Which way is the ratio, i.e., which is typically
moving faster? (b) Use your result from part a to explain why any
helium occurring naturally in the atmosphere has long since escaped
into outer space, never to return. (Helium is obtained commercially
by extracting it from rocks.) You may want to do problem 12 �rst,
for insight.

p

10 Weiping lifts a rock with a weight of 1.0 N through a height
of 1.0 m, and then lowers it back down to the starting point. Bubba
pushes a table 1.0 m across the oor at constant speed, requiring
a force of 1.0 N, and then pushes it back to where it started. (a)
Compare the total work done by Weiping and Bubba. (b) Check
that your answers to part a make sense, using the de�nition of work:
work is the transfer of energy. In your answer, you’ll need to discuss
what speci�c type of energy is involved in each case.
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11 In one of his more amboyant moments, Galileo wrote \Who
does not know that a horse falling from a height of three or four
cubits will break his bones, while a dog falling from the same height
or a cat from a height of eight or ten cubits will su�er no injury?
Equally harmless would be the fall of a grasshopper from a tower or
the fall of an ant from the distance of the moon." Find the speed
of an ant that falls to earth from the distance of the moon at the
moment when it is about to enter the atmosphere. Assume it is
released from a point that is not actually near the moon, so the
moon’s gravity is negligible. You will need the result of example 10
on p. 372.

p

12 Starting at a distance r from a planet of massM , how fast
must an object be moving in order to have a hyperbolic orbit, i.e.,
one that never comes back to the planet? This velocity is called
the escape velocity. Interpreting the result, does it matter in what
direction the velocity is? Does it matter what mass the object has?
Does the object escape because it is moving too fast for gravity to
act on it?

p

13 A projectile is moving directly away from a planet of mass
M at exactly escape velocity. (a) Find r , the distance from the
projectile to the center of the planet, as a function of time, t, and
also �nd v(t).

p

(b) Check the units of your answer.
(c) Does v show the correct behavior ast approaches in�nity?

. Hint, p. 544

14 A car starts from rest at t = 0, and starts speeding up with
constant acceleration. (a) Find the car’s kinetic energy in terms of
its mass, m, acceleration, a, and the time, t. (b) Your answer in
the previous part also equals the amount of work,W , done from
t = 0 until time t. Take the derivative of the previous expression
to �nd the power expended by the car at time t. (c) Suppose two
cars with the same mass both start from rest at the same time, but
one has twice as much acceleration as the other. At any moment,
how many times more power is being dissipated by the more quickly
accelerating car? (The answer is not 2.)

p
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15 A car accelerates from rest. At low speeds, its acceleration
is limited by static friction, so that if we press too hard on the
gas, we will \burn rubber" (or, for many newer cars, a computer-
ized traction-control system will override the gas pedal). At higher
speeds, the limit on acceleration comes from the power of the engine,
which puts a limit on how fast kinetic energy can be developed.
(a) Show that if a force F is applied to an object moving at speed
v, the power required is given byP = vF .
(b) Find the speed v at which we cross over from the �rst regime de-
scribed above to the second. At speeds higher than this, the engine
does not have enough power to burn rubber. Express your result
in terms of the car’s power P , its mass m, the coe�cient of static
friction � s, and g.

p

(c) Show that your answer to part b has units that make sense.
(d) Show that the dependence of your answer on each of the four
variables makes sense physically.
(e) The 2010 Maserati Gran Turismo Convertible has a maximum
power of 3.23� 105 W (433 horsepower) and a mass (including a 50-
kg driver) of 2.03 � 103 kg. (This power is the maximum the engine
can supply at its optimum frequency of 7600 r.p.m. Presumably the
automatic transmission is designed so a gear is available in which
the engine will be running at very nearly this frequency when the
car is moving at v.) Rubber on asphalt has � s � 0.9. Find v for
this car. Answer: 18 m=s, or about 40 miles per hour.
(f) Our analysis has neglected air friction, which can probably be
approximated as a force proportional to v2. The existence of this
force is the reason that the car has a maximum speed, which is 176
miles per hour. To get a feeling for how good an approximation
it is to ignore air friction, �nd what fraction of the engine’s maxi-
mum power is being used to overcome air resistance when the car is
moving at the speedv found in part e. Answer: 1%

16 In 1935, Yukawa proposed an early theory of the force that
held the neutrons and protons together in the nucleus. His equa-
tion for the potential energy of two such particles, at a center-to-
center distancer , wasP E (r ) = gr � 1e� r=a , whereg parametrizes the
strength of the interaction, e is the base of natural logarithms, and
a is about 10� 15 m. Find the force between two nucleons that would
be consistent with this equation for the potential energy.

p

17 The magnitude of the force between two magnets separated
by a distance r can be approximated askr � 3 for large values ofr .
The constant k depends on the strengths of the magnets and the
relative orientations of their north and south poles. Two magnets
are released on a slippery surface at an initial distancer i , and begin
sliding towards each other. What will be the total kinetic energy
of the two magnets when they reach a �nal distancer f ? (Ignore
friction.)

p
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18 A rail gun is a device like a train on a track, with the train
propelled by a powerful electrical pulse. Very high speeds have been
demonstrated in test models, and rail guns have been proposed as
an alternative to rockets for sending into outer space any object
that would be strong enough to survive the extreme accelerations.
Suppose that the rail gun capsule is launched straight up, and that
the force of air friction acting on it is given by F = be� cx , where x
is the altitude, b and c are constants, ande is the base of natural
logarithms. The exponential decay occurs because the atmosphere
gets thinner with increasing altitude. (In reality, the force would
probably drop o� even faster than an exponential, because the cap-
sule would be slowing down somewhat.) Find the amount of kinetic
energy lost by the capsule due to air friction between when it is
launched and when it is completely beyond the atmosphere. (Grav-
ity is negligible, since the air friction force is much greater than the
gravitational force.)

p

19 A certain binary star system consists of two stars with masses
m1 and m2, separated by a distanceb. A comet, originally nearly
at rest in deep space, drops into the system and at a certain point
in time arrives at the midpoint between the two stars. For that
moment in time, �nd its velocity, v, symbolically in terms of b, m1,
m2, and fundamental constants.

p

20 Find the angle between the following two vectors:

x̂ + 2 ŷ + 3 ẑ
4x̂ + 5 ŷ + 6 ẑ

. Hint, p. 544
p

21 An airplane ies in the positive direction along the x axis,
through crosswinds that exert a forceF = ( a + bx)x̂ + ( c + dx)ŷ .
Find the work done by the wind on the plane, and by the plane on
the wind, in traveling from the origin to position x.

p

22 Prove that the dot product de�ned in section 13.3 is rota-
tionally invariant in the sense of section 7.5.

23 Fill in the details of the proof of A �B = AxBx + AyBy + AzBz
on page 369.
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24 A space probe of massm is dropped into a previously un-
explored spherical cloud of gas and dust, and accelerates toward
the center of the cloud under the inuence of the cloud’s gravity.
Measurements of its velocity allow its potential energy,P E , to be
determined as a function of the distancer from the cloud’s cen-
ter. The mass in the cloud is distributed in a spherically symmetric
way, so its density, � (r ), depends only onr and not on the angular
coordinates. Show that by �nding P E , one can infer� (r ) as follows:

� (r ) =
1

4�Gmr 2
d

dr

�
r 2 dP E

dr

�
.

?

25 The purpose of this problem is to estimate the height of the
tides. The main reason for the tides is the moon’s gravity, and we’ll
neglect the e�ect of the sun. Also, real tides are heavily inuenced
by landforms that channel the ow of water, but we’ll think of the
earth as if it was completely covered with oceans. Under these
assumptions, the ocean surface should be a surface of constantU=m.
That is, a thimbleful of water, m, should not be able to gain or lose
any gravitational energy by moving from one point on the ocean
surface to another. If only the spherical earth’s gravity was present,
then we’d have U=m = � GM e=r, and a surface of constantU=m
would be a surface of constantr , i.e., the ocean’s surface would be
spherical. Taking into account the moon’s gravity, the main e�ect is
to shift the center of the sphere, but the sphere also becomes slightly
distorted into an approximately ellipsoidal shape. (The shift of the
center is not physically related to the tides, since the solid part of
the earth tends to be centered within the oceans; really, this e�ect
has to do with the motion of the whole earth through space, and
the way that it wobbles due to the moon’s gravity.) Determine the
amount by which the long axis of the ellipsoid exceeds the short
axis. . Hint, p. 544 ?

26 A mass moving in one dimension is attached to a horizon-
tal spring. It slides on the surface below it, with equal coe�cients
of static and kinetic friction, � k = � s. The equilibrium position is
x = 0. If the mass is pulled to some initial position and released
from rest, it will complete some number of oscillations before fric-
tion brings it to a stop. When released from x = a (a > 0), it
completes exactly 1/4 of an oscillation, i.e., it stops precisely at
x = 0. Similarly, de�ne b > 0 as the greatestx from which it could
be released and comlete 1/2 of an oscillation, stopping on the far
side and not coming back toward equilibrium. Find b=a. Hint: To
keep the algebra simple, set every �xed parameter of the system
equal to 1.

p
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27 \Big wall" climbing is a specialized type of rock climbing that
involves going up tall cli�s such as the ones in Yosemite, usually with
the climbers spending at least one night sleeping on a natural ledge
or an arti�cial \portaledge." In this style of climbing, each pitch of
the climb involves strenuously hauling up several heavy bags of gear
| a fact that has caused these climbs to be referred to as \vertical
ditch digging." (a) If an 80 kg haul bag has to be pulled up the full
length of a 60 m rope, how much work is done? (b) Since it can be
di�cult to lift 80 kg, a 2:1 pulley is often used. The hauler then
lifts the equivalent of 40 kg, but has to pull in 120 m of rope. How
much work is done in this case?

p

28 Let a and b be any two numbers (not both zero), and let
u = ax̂ + bŷ . Suppose we want to �nd a (nonzero) second vector
v in the x-y plane that is perpendicular to u. Use the vector dot
product to write down a condition for v to satisfy, �nd a suitable
v , and check using the dot product that it is indeed a solution.

29 A soccer ball of massm is moving at speedv when you kick
it in the same direction it is moving. You kick it with constant force
F , and you want to triple the ball’s speed. Over what distance must
your foot be in contact with the ball?

p
[problem by B. Shotwell]
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Pool balls exchange momentum.

Chapter 14

Conservation of
Momentum

In many sub�elds of physics these days, it is possible to read an
entire issue of a journal without ever encountering an equation in-
volving force or a reference to Newton’s laws of motion. In the last
hundred and �fty years, an entirely di�erent framework has been
developed for physics, based on conservation laws.

The new approach is not just preferred because it is in fashion.
It applies inside an atom or near a black hole, where Newton’s laws
do not. Even in everyday situations the new approach can be supe-
rior. We have already seen how perpetual motion machines could be
designed that were too complex to be easily debunked by Newton’s
laws. The beauty of conservation laws is that they tell us something
must remain the same, regardless of the complexity of the process.

So far we have discussed only two conservation laws, the laws of
conservation of mass and energy. Is there any reason to believe that
further conservation laws are needed in order to replace Newton’s
laws as a complete description of nature? Yes. Conservation of mass
and energy do not relate in any way to the three dimensions of space,
because both are scalars. Conservation of energy, for instance, does
not prevent the planet earth from abruptly making a 90-degree turn
and heading straight into the sun, because kinetic energy does not
depend on direction. In this chapter, we develop a new conserved
quantity, called momentum, which is a vector.
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14.1 Momentum
A conserved quantity of motion

Your �rst encounter with conservation of momentum may have
come as a small child unjustly con�ned to a shopping cart. You spot
something interesting to play with, like the display case of imported
wine down at the end of the aisle, and decide to push the cart over
there. But being imprisoned by Dad in the cart was not the only
injustice that day. There was a far greater conspiracy to thwart
your young id, one that originated in the laws of nature. Pushing
forward did nudge the cart forward, but it pushed you backward.
If the wheels of the cart were well lubricated, it wouldn’t matter
how you jerked, yanked, or kicked o� from the back of the cart.
You could not cause any overall forward motion of the entire system
consisting of the cart with you inside.

In the Newtonian framework, we describe this as arising from
Newton’s third law. The cart made a force on you that was equal
and opposite to your force on it. In the framework of conservation
laws, we cannot attribute your frustration to conservation of energy.
It would have been perfectly possible for you to transform some of
the internal chemical energy stored in your body to kinetic energy
of the cart and your body.

The following characteristics of the situation suggest that there
may be a new conservation law involved:

A closed system is involved. All conservation laws deal with
closed systems. You and the cart are a closed system, since the
well-oiled wheels prevent the oor from making any forward force
on you.

Something remains unchanged. The overall velocity of the
system started out being zero, and you cannot change it. This
vague reference to \overall velocity" can be made more precise:
it is the velocity of the system’s center of mass that cannot be
changed.

Something can be transferred back and forth without
changing the total amount. If we de�ne forward as positive
and backward as negative, then one part of the system can gain
positive motion if another part acquires negative motion. If we
don’t want to worry about positive and negative signs, we can
imagine that the whole cart was initially gliding forward on its
well-oiled wheels. By kicking o� from the back of the cart, you
could increase your own velocity, but this inevitably causes the
cart to slow down.
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It thus appears that there is some numerical measure of an object’s
quantity of motion that is conserved when you add up all the objects
within a system.

Momentum

Although velocity has been referred to, it is not the total velocity
of a closed system that remains constant. If it was, then �ring a
gun would cause the gun to recoil at the same velocity as the bullet!
The gun does recoil, but at a much lower velocity than the bullet.
Newton’s third law tells us

Fgun on bullet = � Fbullet on gun ,

and assuming a constant force for simplicity, Newton’s second law
allows us to change this to

mbullet
� vbullet

� t
= � mgun

� vgun

� t
.

Thus if the gun has 100 times more mass than the bullet, it will
recoil at a velocity that is 100 times smaller and in the opposite
direction, represented by the opposite sign. The quantity mv is
therefore apparently a useful measure of motion, and we give it a
name, momentum , and a symbol, p. (As far as I know, the letter
\p" was just chosen at random, since \m" was already being used for
mass.) The situations discussed so far have been one-dimensional,
but in three-dimensional situations it is treated as a vector.

de�nition of momentum for material objects
The momentum of a material object, i.e., a piece of matter, is de�ned
as

p = mv ,

the product of the object’s mass and its velocity vector.

The units of momentum are kg�m=s, and there is unfortunately no
abbreviation for this clumsy combination of units.

The reasoning leading up to the de�nition of momentum was all
based on the search for a conservation law, and the only reason why
we bother to de�ne such a quantity is that experiments show it is
conserved:

the law of conservation of momentum
In any closed system, the vector sum of all the momenta remains
constant,

p1i + p2i + : : : = p1f + p2f + : : : ,

where i labels the initial and f the �nal momenta. (A closed system
is one on which no external forces act.)
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This chapter �rst addresses the one-dimensional case, in which the
direction of the momentum can be taken into account by using plus
and minus signs. We then pass to three dimensions, necessitating
the use of vector addition.

A subtle point about conservation laws is that they all refer to
\closed systems," but \closed" means di�erent things in di�erent
cases. When discussing conservation of mass, \closed" means a sys-
tem that doesn’t have matter moving in or out of it. With energy,
we mean that there is no work or heat transfer occurring across
the boundary of the system. For momentum conservation, \closed"
means there are no externalforces reaching into the system.

A cannon example 1
. A cannon of mass 1000 kg �res a 10-kg shell at a velocity of
200 m/s. At what speed does the cannon recoil?

. The law of conservation of momentum tells us that

pcannon,i + pshell ,i = pcannon,f + pshell ,f .

Choosing a coordinate system in which the cannon points in the
positive direction, the given information is

pcannon,i = 0
pshell ,i = 0
pshell ,f = 2000 kg�m=s.

We must have pcannon,f = � 2000 kg�m=s, so the recoil velocity of
the cannon is � 2 m/s.

Ion drive for propelling spacecraft example 2
. The experimental solar-powered ion drive of the Deep Space 1
space probe expels its xenon gas exhaust at a speed of 30,000
m/s, ten times faster than the exhaust velocity for a typical chem-
ical-fuel rocket engine. Roughly how many times greater is the
maximum speed this spacecraft can reach, compared with a chem-
ical-fueled probe with the same mass of fuel (�reaction mass�)
available for pushing out the back as exhaust?

. Momentum equals mass multiplied by velocity. Both spacecraft
are assumed to have the same amount of reaction mass, and the
ion drive’s exhaust has a velocity ten times greater, so the mo-
mentum of its exhaust is ten times greater. Before the engine
starts �ring, neither the probe nor the exhaust has any momen-
tum, so the total momentum of the system is zero. By conserva-
tion of momentum, the total momentum must also be zero after
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a / The ion drive engine of the NASA Deep Space 1 probe, shown
under construction (left) and being tested in a vacuum chamber (right)
prior to its October 1998 launch. Intended mainly as a test vehicle for new
technologies, the craft nevertheless carried out a successful scienti�c
program that included a �yby of a comet.

all the exhaust has been expelled. If we de�ne the positive di-
rection as the direction the spacecraft is going, then the negative
momentum of the exhaust is canceled by the positive momen-
tum of the spacecraft. The ion drive allows a �nal speed that is
ten times greater. (This simpli�ed analysis ignores the fact that
the reaction mass expelled later in the burn is not moving back-
ward as fast, because of the forward speed of the already-moving
spacecraft.)

Generalization of the momentum concept

As with all the conservation laws, the law of conservation of mo-
mentum has evolved over time. In the 1800’s it was found that a
beam of light striking an object would give it some momentum, even
though light has no mass, and would therefore have no momentum
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b / Steam and other gases
boiling off of the nucleus of Hal-
ley’s comet. This close-up photo
was taken by the European Giotto
space probe, which passed within
596 km of the nucleus on March
13, 1986.

c / Halley’s comet, in a much
less magni�ed view from a
ground-based telescope.

according to the above de�nition. Rather than discarding the princi-
ple of conservation of momentum, the physicists of the time decided
to see if the de�nition of momentum could be extended to include
momentum carried by light. The process is analogous to the process
outlined on page 317 for identifying new forms of energy. The �rst
step was the discovery that light could impart momentum to matter,
and the second step was to show that the momentum possessed by
light could be related in a de�nite way to observable properties of
the light. They found that conservation of momentum could be suc-
cessfully generalized by attributing to a beam of light a momentum
vector in the direction of the light’s motion and having a magnitude
proportional to the amount of energy the light possessed. The mo-
mentum of light is negligible under ordinary circumstances, e.g., a
ashlight left on for an hour would only absorb about 10 � 5 kg�m=s
of momentum as it recoiled.

The tail of a comet example 3
Momentum is not always equal to mv . Like many comets, Hal-
ley’s comet has a very elongated elliptical orbit. About once per
century, its orbit brings it close to the sun. The comet’s head, or
nucleus, is composed of dirty ice, so the energy deposited by the
intense sunlight boils off steam and dust, b. The sunlight does
not just carry energy, however � it also carries momentum. The
momentum of the sunlight impacting on the smaller dust particles
pushes them away from the sun, forming a tail, c. By analogy
with matter, for which momentum equals mv , you would expect
that massless light would have zero momentum, but the equation
p = mv is not the correct one for light, and light does have mo-
mentum. (The gases typically form a second, distinct tail whose
motion is controlled by the sun’s magnetic �eld.)

The reason for bringing this up is not so that you can plug
numbers into a formulas in these exotic situations. The point is
that the conservation laws have proven so sturdy exactly because
they can easily be amended to �t new circumstances. Newton’s
laws are no longer at the center of the stage of physics because they
did not have the same adaptability. More generally, the moral of
this story is the provisional nature of scienti�c truth.

It should also be noted that conservation of momentum is not
a consequence of Newton’s laws, as is often asserted in textbooks.
Newton’s laws do not apply to light, and therefore could not pos-
sibly be used to prove anything about a concept as general as the
conservation of momentum in its modern form.

Momentum compared to kinetic energy

Momentum and kinetic energy are both measures of the quan-
tity of motion, and a sideshow in the Newton-Leibnitz controversy
over who invented calculus was an argument over whethermv (i.e.,
momentum) or mv2 (i.e., kinetic energy without the 1/2 in front)
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d / Examples 4 and 5. The
momenta cancel, but the ener-
gies don’t.

was the \true" measure of motion. The modern student can cer-
tainly be excused for wondering why we need both quantities, when
their complementary nature was not evident to the greatest minds
of the 1700’s. The following table highlights their di�erences.

kinetic energy . . . momentum . . .
is a scalar. is a vector.
is not changed by a force perpendic-
ular to the motion, which changes
only the direction of the velocity
vector.

is changed by any force, since a
change in either the magnitude or
the direction of the velocity vector
will result in a change in the mo-
mentum vector.

is always positive, and cannot cancel
out.

cancels with momentum in the op-
posite direction.

can be traded for other forms of en-
ergy that do not involve motion. KE
is not a conserved quantity by itself.

is always conserved in a closed sys-
tem.

is quadrupled if the velocity is dou-
bled.

is doubled if the velocity is doubled.

A spinning top example 4
A spinning top has zero total momentum, because for every mov-
ing point, there is another point on the opposite side that cancels
its momentum. It does, however, have kinetic energy.

Why a tuning fork has two prongs example 5
A tuning fork is made with two prongs so that they can vibrate in
opposite directions, canceling their momenta. In a hypothetical
version with only one prong, the momentum would have to oscil-
late, and this momentum would have to come from somewhere,
such as the hand holding the fork. The result would be that vi-
brations would be transmitted to the hand and rapidly die out.
In a two-prong fork, the two momenta cancel, but the energies
don’t.

Momentum and kinetic energy in �ring a ri�e example 6
The ri�e and bullet have zero momentum and zero kinetic energy
to start with. When the trigger is pulled, the bullet gains some mo-
mentum in the forward direction, but this is canceled by the ri�e’s
backward momentum, so the total momentum is still zero. The
kinetic energies of the gun and bullet are both positive scalars,
however, and do not cancel. The total kinetic energy is allowed to
increase, because kinetic energy is being traded for other forms
of energy. Initially there is chemical energy in the gunpowder.
This chemical energy is converted into heat, sound, and kinetic
energy. The gun’s �backward� kinetic energy does not refrigerate
the shooter’s shoulder!
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The wobbly earth example 7
As the moon completes half a circle around the earth, its motion
reverses direction. This does not involve any change in kinetic
energy, and the earth’s gravitational force does not do any work
on the moon. The reversed velocity vector does, however, imply
a reversed momentum vector, so conservation of momentum in
the closed earth-moon system tells us that the earth must also
change its momentum. In fact, the earth wobbles in a little �or-
bit� about a point below its surface on the line connecting it and
the moon. The two bodies’ momentum vectors always point in
opposite directions and cancel each other out.

The earth and moon get a divorce example 8
Why can’t the moon suddenly decide to �y off one way and the
earth the other way? It is not forbidden by conservation of mo-
mentum, because the moon’s newly acquired momentum in one
direction could be canceled out by the change in the momentum
of the earth, supposing the earth headed the opposite direction
at the appropriate, slower speed. The catastrophe is forbidden by
conservation of energy, because both their energies would have
to increase greatly.

Momentum and kinetic energy of a glacier example 9
A cubic-kilometer glacier would have a mass of about 1012 kg. If
it moves at a speed of 10� 5 m/s, then its momentum is 107 kg �
m=s. This is the kind of heroic-scale result we expect, perhaps
the equivalent of the space shuttle taking off, or all the cars in LA
driving in the same direction at freeway speed. Its kinetic energy,
however, is only 50 J, the equivalent of the calories contained
in a poppy seed or the energy in a drop of gasoline too small
to be seen without a microscope. The surprisingly small kinetic
energy is because kinetic energy is proportional to the square of
the velocity, and the square of a small number is an even smaller
number.

Discussion questions

A If all the air molecules in the room settled down in a thin �lm on the
�oor, would that violate conservation of momentum as well as conserva-
tion of energy?

B A refrigerator has coils in the back that get hot, and heat is molecular
motion. These moving molecules have both energy and momentum. Why
doesn’t the refrigerator need to be tied to the wall to keep it from recoiling
from the momentum it loses out the back?
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e / This Hubble Space Tele-
scope photo shows a small
galaxy (yellow blob in the lower
right) that has collided with a
larger galaxy (spiral near the
center), producing a wave of star
formation (blue track) due to the
shock waves passing through
the galaxies’ clouds of gas. This
is considered a collision in the
physics sense, even though it is
statistically certain that no star in
either galaxy ever struck a star in
the other. (This is because the
stars are very small compared to
the distances between them.)

14.2 Collisions in one dimension
Physicists employ the term \collision" in a broader sense than

ordinary usage, applying it to any situation where objects interact
for a certain period of time. A bat hitting a baseball, a radioactively
emitted particle damaging DNA, and a gun and a bullet going their
separate ways are all examples of collisions in this sense. Physical
contact is not even required. A comet swinging past the sun on a
hyperbolic orbit is considered to undergo a collision, even though it
never touches the sun. All that matters is that the comet and the
sun exerted gravitational forces on each other.

The reason for broadening the term \collision" in this way is
that all of these situations can be attacked mathematically using
the same conservation laws in similar ways. In the �rst example,
conservation of momentum is all that is required.

Getting rear-ended example 10
. Ms. Chang is rear-ended at a stop light by Mr. Nelson, and sues
to make him pay her medical bills. He testi�es that he was only
going 35 miles per hour when he hit Ms. Chang. She thinks he
was going much faster than that. The cars skidded together after
the impact, and measurements of the length of the skid marks
and the coef�cient of friction show that their joint velocity immedi-
ately after the impact was 19 miles per hour. Mr. Nelson’s Nissan
weighs 3100 pounds, and Ms. Chang ’s Cadillac weighs 5200
pounds. Is Mr. Nelson telling the truth?

. Since the cars skidded together, we can write down the equation
for conservation of momentum using only two velocities, v for Mr.
Nelson’s velocity before the crash, and v0 for their joint velocity
afterward:

mNv = mNv0+ mCv0.

Solving for the unknown, v , we �nd

v =
�

1 +
mC
mN

�
v0.

Although we are given the weights in pounds, a unit of force, the
ratio of the masses is the same as the ratio of the weights, and
we �nd v = 51 miles per hour. He is lying.

The above example was simple because both cars had the same
velocity afterward. In many one-dimensional collisions, however, the
two objects do not stick. If we wish to predict the result of such a
collision, conservation of momentum does not su�ce, because both
velocities after the collision are unknown, so we have one equation
in two unknowns.

Conservation of energy can provide a second equation, but its
application is not as straightforward, because kinetic energy is only
the particular form of energy that has to do with motion. In many
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Gory details of the proof in
example 11

The equation A + B = C + D says
that the change in one ball’s ve-
locity is equal and opposite to the
change in the other’s. We invent a
symbol x = C � A for the change
in ball 1’s velocity. The second
equation can then be rewritten as
A2+B2 = (A+x)2+(B � x)2. Squar-
ing out the quantities in parenthe-
ses and then simplifying, we get
0 = Ax � Bx + x2. The equation
has the trivial solution x = 0, i.e.,
neither ball’s velocity is changed,
but this is physically impossible be-
cause the balls can’t travel through
each other like ghosts. Assuming
x 6= 0, we can divide by x and
solve for x = B � A. This means
that ball 1 has gained an amount
of velocity exactly right to match
ball 2’s initial velocity, and vice-
versa. The balls must have swap-
ped velocities.

collisions, part of the kinetic energy that was present before the
collision is used to create heat or sound, or to break the objects
or permanently bend them. Cars, in fact, are carefully designed to
crumple in a collision. Crumpling the car uses up energy, and that’s
good because the goal is to get rid of all that kinetic energy in a
relatively safe and controlled way. At the opposite extreme, a su-
perball is \super" because it emerges from a collision with almost all
its original kinetic energy, having only stored it briey as potential
energy while it was being squashed by the impact.

Collisions of the superball type, in which almost no kinetic en-
ergy is converted to other forms of energy, can thus be analyzed
more thoroughly, because they haveKE f = KE i , as opposed to
the less useful inequalityKE f < KE i for a case like a tennis ball
bouncing on grass. These two types of collisions are referred to,
respectively, as elastic and inelastic. The extreme inelastic case is
discussed further on p.??.

Pool balls colliding head-on example 11
. Two pool balls collide head-on, so that the collision is restricted
to one dimension. Pool balls are constructed so as to lose as little
kinetic energy as possible in a collision, so under the assumption
that no kinetic energy is converted to any other form of energy,
what can we predict about the results of such a collision?

. Pool balls have identical masses, so we use the same symbol
m for both. Conservation of momentum and no loss of kinetic
energy give us the two equations

mv1i + mv2i = mv1f + mv2f

1
2

mv2
1i +

1
2

mv2
2i =

1
2

mv2
1f +

1
2

mv2
2f

The masses and the factors of 1/2 can be divided out, and we
eliminate the cumbersome subscripts by replacing the symbols
v1i ,... with the symbols A, B, C, and D:

A + B = C + D

A2 + B2 = C2 + D2.

A little experimentation with numbers shows that given values of A
and B, it is impossible to �nd C and D that satisfy these equations
unless C and D equal A and B, or C and D are the same as A
and B but swapped around. A formal proof of this fact is given
in the sidebar. In the special case where ball 2 is initially at rest,
this tells us that ball 1 is stopped dead by the collision, and ball
2 heads off at the velocity originally possessed by ball 1. This
behavior will be familiar to players of pool.

Often, as in the example above, the details of the algebra are
the least interesting part of the problem, and considerable physical
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