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1 Absolute Zero

Note to the students: As (hopefully) announced pre-
viously, you need to wear close-toed shoes, and it is
up to you to buy your own safety glasses, although
the physics department has a few.

Note to the lab technician: Please put the alcohol
and acetone in a freezer overnight, then put them in
the ice chest right before lab. Please also purchase
dry ice. When you put out the waste disposal con-
tainer, please don’t leave the cap with it, because
we don’t want students to screw on the cap; if they
did, evaporating dry ice could make it explode like
a bomb.

Apparatus
electric heating pad
oven mitts
latex tubing
ice chest to keep liquids cool
acetone (1.5 liter for the whole class)
alcohol
mineral oil
waste disposal container
dry ice (9 lb)
tongs
hammer
funnels
gas pressure sensor
temperature probe
125 ml Erlenmyer flask
600 ml beaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2/group
safety goggles
fold-top sandwich bags

Introduction
If heat is a form of random molecular motion, then
it makes sense that there is some minimum temper-
ature at which the molecules aren’t moving at all.
With fancy equipment, physicists have gotten sam-
ples of matter to within a fraction of a degree above
absolute zero, but they have never actually reached
absolute zero (and the laws of thermodynamics ac-
tually imply that they never can). Nevertheless, we
can determine how cold absolute zero is without even
getting very close to it. Kinetic theory tells us that
heat is composed of random molecular motion, and

temperature is interpeted as a measure of the av-
erage kinetic energy per molecule; the zero of the
absolute temperature scale occurs when all molecu-
lar motion is eliminated. Suppose we heat up a gas
so that the typical speeds of the atoms are doubled.
The kinetic energy depends on v2, so the result is
that the temperature is quadrupled:

T → 4T

In this lab, we’ll be heating and cooling air while it is
sealed inside a flask with a fixed volume. We won’t
actually be quadrupling the absolute temperature in
this lab, but just to get the idea, let’s pretend that
we were. The hot gas exerts more pressure on the
inside of the flask, for two reasons: (1) the molecules
are moving twice as fast, so when they hit the sides
of the flask, each impact is twice as hard; (2) because
the molecules are moving twice as fast, they also take
less time to cross from one side of the flask to the
other, so the collisions occur twice as frequently. The
result is that the pressure is quadrupled:

P → 4P

Based on these arguments, we conclude that in gen-
eral, the pressure of a gas maintained at constant
volume is proportional to its absolute temperature:

P ∝ T

In this lab, you’ll measure the volume of a sample
of air at temperatures between about −70 and 150
degrees C, and determine where absolute zero lies by
extrapolating to the temperature at which it would
have had zero pressure.

Because absolute zero is very far below room tem-
perature, this is a long extrapolation. Extrapolating
a long way like this tends to be inaccurate unless
you can get data covering a large range, so that the
slope is well determined. For this reason, we want
to get a set of temperatures that goes as high and
as low as possible.

Observations
The following important rules serve to keep facts
separate from opinions and reduce the chances of
getting a garbled copy of the data:
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(1) Take your raw data in pen, directly into your lab
notebook. This is what real scientists do. The point
is to make sure that what you’re writing down is
a first-hand record, without mistakes introduced by
recopying it. (If you don’t have your two lab note-
books yet, staple today’s raw data into your note-
book when you get it.)

(2) Everybody should record their own copy of the
raw data. Do not depend on a “group secretary.”

(3) If you do calculations during lab, keep them on
a separate page or draw a line down the page and
keep calculations on one side of the line and raw
data on the other. This is to distinguish facts from
inferences. (I will deduct 25% from your grade if you
mix calculations and raw data.)

(4) Never write numbers without units. Without
units, a number is meaningless. There is a big dif-
ference bewteen “Johnny is six” and “Johnny is six
feet.” (I will deduct 25% from your grade if you
write numbers without units.)

Because this is the first meeting of the lab class,
there is no prelab writeup due at the beginning of
the class. Instead, you will discuss your results with
your instructor at various points.

• Hot mineral oil Thoroughly dry the beaker in
which you’ll heat the mineral oil; if there are
drops of water mixed into the oil, the oil will
spatter. Measure and plan the volume of oil
you will use. If you use too little, it won’t cover
the whole Erlenmeyer flask that holds the sam-
ple of air. If you use too much, it will overflow
and make a nasty mess when you dunk the
flask in it. Start heating the mineral oil. Keep
an eye on the temperature. You should heat
it up to about 150 ◦C; above that, it starts to
smoke.

While you’re waiting for the mineral oil to heat up,
plug the temperature and pressure sensors into CH1
and CH2 on the LabPro interface. Use the Logger
Pro software to view the temperature readout. Put
the stopper in the Erlenmyer flask in order to make
a sealed sample of air. There is an extra port on the
stopper with a blue stopcock; make sure the stop-
cock is closed, so that the sample is sealed. Connect
the flask to the pressure sensor using the latex tub-
ing. The temperature probe goes in the liquid, not
the air.

The whole lab is predicated on the ability to main-
tain the same sample of gas at a range of tempera-
tures. Therefore if you have a leak, you have to do

the whole lab over. Make sure the bayonet connec-
tor with the stopcock is firmly shoved into the hole
in the rubber stopper. If you notice that the pres-
sure doesn’t change as the temperature changes, it
means you have a leak.

A practical difficulty in this lab is that if the flask is
initially sealed, and then heated to a higher temper-
ature, the stopper tends to pop out due to the higher
pressure. To keep this from happening, we want to
start off with a sample of air that is hot and at at-
mospheric pressure; then all the other pressures will
be at lower than atmospheric pressure, which will
tend to suck the stopper down into the flask rather
than popping it out. To accomplish this, take the
oil off the burner, open the stopcock on the flask,
immerse the flask in the oil, wait a little bit for the
air inside the flask to heat up, and then close the
stopcock again. The Erlenmyer flask wants to bob
up out of the oil, so use some tape to hold it down.
Take pressure and temperature data.

Although it’s undesirable that the small amount of
air in the tubing won’t be at exactly the same tem-
perature as the rest of the air, we can’t avoid this,
because the mineral oil is hot enough to melt the
tubing.

When you’re done with the mineral oil, wash the
beaker with soap and water.

We’ll next do a series of measurements at lower tem-
peratures:

• Room-temperature tap water Make sure that
the pressure drops by about a third when you
come down to this temperature. If it doesn’t,
you probably have an air leak.

• Ice-cold alcohol

• Acetone/dry ice slurry: Use the hammer to
knock off a piece of dry ice. Remove the piece
using the tongs, stick it in a baggie, and crush
it up some more with a hammer. Add the dry
ice to the acetone (nail polish remover) slowly;
if you do it rapidly, it can fizz violently. Mix
the dry ice and acetone to make a slush. Ace-
tone is flammable, so avoid creating any sparks
or flames. This mixture cannot be dumped
down the drain when you’re done; keep it so
that it can be disposed of properly. To reduce
the amount of waste disposal, you can reuse
another group’s slurry. You should be able to
get the temperature down to about−60 to−80
celsius. If you only get to −20, you’re doing
something wrong.
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Analysis
Graph the temperature and pressure against each
other. Does the graph appear to be linear? If so, ex-
trapolate to find the temperature at which the pres-
sure would be zero.

Error analysis and propagation of errors are dis-
cussed in Appendices 2 and 3, which you should read
if you haven’t had a previous lab course that did
these topics.

If your data are nice and linear, then your main
source of error will be random errors, and you should
then determine error bars for your value of absolute
zero using the techniques discussed in Appendix 4.
The appendix discusses finding the slope of a line, al-
though in this lab it’s actually the x- or y-intercept
that you want; the technique is analogous, however.
The easiest way to estimate the error bars on the
points is to use the typical amount of scatter of the
points about the best-fit line. For example, if the
systematic trend of the data is linear, but the points
generally lie an average of about 5 ◦C away from the
line, then the error bars are approximately 5 ◦C.

Compare your result with the accepted value and
give a probabilistic interpretation as in the example
on p. 75.

Notes For Next Week
(1) Next week, when you turn in your writeup for
this lab, you also need to turn in a prelab writeup
for the next lab. The prelab questions are listed
at the end of the description of that lab in the lab
manual. Never start a lab without understanding
the answers to all the prelab questions; if you turn
in partial answers or answers you’re unsure of, dis-
cuss the questions with your instructor or with other
students to make sure you understand what’s going
on.

(2) You should exchange phone numbers with your
lab partners for general convenience throughout the
semester. You can also get each other’s e-mail ad-
dresses by logging in to Spotter and clicking on “e-
mail.”

Rules and Organization
Collection of raw data is work you share with your
lab partners. Once you’re done collecting data, you
need to do your own analysis. E.g., it is not okay for
two people to turn in the same calculations, or on a

lab requiring a graph for the whole group to make
one graph and turn in copies.

You’ll do some labs as formal writeups, others as
informal “check-off” labs. As described in the syl-
labus, they’re worth different numbers of points, and
you have to do a certain number of each type by the
end of the semester.

The format of formal lab writeups is given in ap-
pendix 1 on page 70. The raw data section must
be contained in your bound lab notebook. Typically
people word-process the abstract section, and any
other sections that don’t include much math, and
stick the printout in the notebook to turn it in. The
calculations and reasoning section will usually just
consist of hand-written calculations you do in your
lab notebook. You need two lab notebooks, because
on days when you turn one in, you need your other
one to take raw data in for the next lab. You may
find it convenient to leave one or both of your note-
books in the cupboard at your lab bench whenever
you don’t need to have them at home to work on;
this eliminates the problem of forgetting to bring
your notebook to school.

For a check-off lab, the main thing I’ll pay attention
to is your abstract. The rest of your work for a
check-off lab can be informal, and I may not ask to
see it unless I think there’s a problem after reading
your abstract.
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2 Two-Source Interference

Apparatus
ripple tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
yellow foam pads . . . . . . . . . . . . . . . . . . . . . . . . . 4/group
lamp and unfrosted straight-filament bulb
1/group wave generator . . . . . . . . . . . . . . . . . . .1/group
big metal L-shaped arms for hanging
the wave generator . . . . . . . . . . . . . . . . . . . . . . . 1/group
little metal L-shaped arms with yellow
plastic balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2/group
rubber bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2/group
Thornton DC voltage source (in lab bench) 1/group
small rubber stopper . . . . . . . . . . . . . . . . . . . . . 1/group
power strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
bucket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
mop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
flathead screwdriver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
rulers and protractors
kimwipes and alcohol for cleaning
butcher paper

Goals
Observe how a 2-source interference pattern of
water waves depends on the distance between
the sources.

Observations
A car or a pool ball travels along a well-defined path,
but a wave doesn’t. Not only that, but waves don’t
simply collide and bounce like pool balls. They over-
lap and add on to one another, so that they can
reinforce or cancel. This seems like it would be ex-
tremely complicated to calculate.

Life isn’t that bad. It turns out that all of the most
important ideas about light as a wave can be seen

in one simple experiment, shown in the first figure.1

A wave comes up from the bottom of the page, and
encounters a wall with two slits chopped out of it.
The result is a fan pattern, with strong wave motion
coming out along directions like X and Z, but no
vibration of the water at all along lines like Y. The
reason for this pattern is shown in the second figure.
The two parts of the wave that get through the slits
create an overlapping pattern of ripples. To get to
a point on line X, both waves have to go the same
distance, so they’re in step with each other, and re-
inforce. But at a point on line Y, due to the unequal
distances involved, one wave is going up while the
other wave is going down, so there is cancellation.
The angular spacing of the fan pattern depends on
both the wavelength of the waves, λ, and the dis-
tance between the slits, d.

The ripple tank is tank that sits about 30 cm above
the floor. You put a little water in the tank, and
produce waves. There is a lamp above it that makes
a point-like source of light, and the waves cast pat-
terns of light on a screen placed on the floor. The
patterns of light on the screen are easier to see and
measure than the ripples themselves.

In reality, it’s not very convenient to produce a double-
slit diffraction pattern exactly as depicted in the first
figure, because the waves beyond the slits are so
weak that they are difficult to observe clearly. In-
stead, you’ll simply produce synchronized circular
ripples from two sources driven by a motor.

Put the tank on the floor. Plug the hole in the side of
the tank with the black rubber stopper. If the plastic
is dirty, clean it off with alcohol and kimwipes. Wet
the four yellow foam pads, and place them around
the sides of the tank. Pour in water to a depth of
about 5-7 mm. Adjust the metal feet to level the
tank, so that the water is of equal depth throughout
the tank. (Do not rotate the wooden legs them-

1The photo is from the textbook PSSC Physics, which has
a blanket permission for free use after 1970.
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selves, just the feet.) If too many bubbles form on
the plastic, wipe them off with a ruler.

Make sure the straight-filament bulb in the light
source is rotated so that when you look in through
the hole, you are looking along the length of the fil-
ament. This way the lamp acts like a point source
of light above the tank. To test that it’s oriented
correctly, check that you can cast a perfectly sharp
image of the tip of a pen.

The light source is intended to be clamped to the
wooden post, but I’ve found that that works very
poorly, since the clamp doesn’t hold it firmly enough.
Instead, clamp the light source to the lab bench’s lip
or its leg. Turn it on. Put the butcher paper on the
floor under the tank. If you make ripples in the
water, you should be able to see the wave pattern
on the screen.

The wave generator consists of a piece of wood that
hangs by rubber bands from the two L-shaped metal
hangers. There is a DC motor attached, which spins
an intentionally unbalanced wheel, resulting in vi-
bration of the wood. The wood itself can be used
to make straight waves directly in the water, but
in this experiment you’ll be using the two little L-
shaped pieces of metal with the yellow balls on the
end to make two sources of circular ripples. The DC
motor runs off of the DC voltage source, and the
more voltage you supply, the faster the motor runs.

Start just by sticking one little L-shaped arm in the
piece of wood, and observing the circular wave pat-
tern it makes. Now try two sources at once, in neigh-
boring holes. Pick a speed (frequency) for the motor
that you’ll use throughout the experiment — a fairly
low speed works well. Measure the angular spacing
of the resulting diffraction pattern for several values
of the spacing, d, between the two sources of ripples.

Use the methods explained in Appendix 5 and look
for any kind of a power law relationship for the de-
pendence of the angular spacing on d.
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3 Standing Waves

Apparatus
string
weights (in lab benches)
1 g slotted weights (in tray)
pulley
vibrator
paperclips
metersticks
butcher paper
scissors
weight holders
digital balances

Goals
Observe the resonant modes of vibration of a
string.

Find how the speed of waves on a string de-
pends on the tension in the string.

Introduction
The Greek philosopher Pythagoras is said to have
been the first to observe that two plucked strings
sounded good together when their lengths were in
the proportion of two small integers. (This is assum-
ing the strings are of the same material and under
the same tension.) For instance, he thought a pleas-
ant combination of notes was produced when one
string was twice the length of the other, but that the
combination was unpleasant when the ratio was, say,
1.4 to 1 (like the notes B and F). Although different
combinations of notes are used in different cultures
and different styles of music, there is at least some
scientific justification for Pythagoras’ statement. We
now know that a plucked string does not just vibrate
at a single frequency but simultaneously at a whole
series of frequencies f1, 2f1, 3f1,... These frequen-
cies are called the harmonics. If one string is twice
the length of the other, then its lowest harmonic is at
half the frequency of the other string’s, and its har-
monics coincide with the odd-numbered harmonics
of the other string. If the ratio is 1.4 to 1, however,
then there is essentially no regular relationship be-
tween the two sets of frequencies, and many of the
harmonics lie close enough in frequency to produce

unpleasant beats.

Setup
The apparatus allows you to excite vibrations at a
fixed frequency of f (twice the frequency of the al-
ternating current from the wall that runs the vibra-
tor). Since the point of the lab is to determine a
proportionality, any constant factor, such as f , can
be discarded.

The tension in the string can be controlled by vary-
ing the weight.

You may find it helpful to put a strip of white butcher
paper behind the black string for better visual con-
trast.

It’s important to get the vibrator set up properly
along the same line as the string, not at an angle.

If there’s a loud buzzing, try moving the vibrator so
that it doesn’t touch the bracket holding it.

Observations
Observe as many patterns (“modes”) of vibration as
you can. Each mode can be labeled by N , the num-
ber of humps or half-wavelengths. You will probably
not be able to observe the fundamental (N = 1) be-
cause it would require too much weight. In each case,
you will want to fine-tune the weight to get as close
as possible to the middle of the resonance, where
the amplitude of vibration is at a maximum. When
you’re close to the peak of a resonance, an easy way
to tell whether to add or remove weight is by gen-
tly pressing down or lifting up on the weights with
your finger to see whether the amplitude increases
or decreases.

For large values of N , you may find that you need to
use a paperclip instead of the weight holder, in order
to make the mass sufficiently small. Keep in mind,
however, that you won’t really improve the quality
of your data very much by taking data for very high
values of N , since the 1-gram precision with which
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you can locate these resonances results in a poor
relative precision compared to a small weight.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

If you were assigned problem 2-12 in Modern Physics,
skip the prelab.

P1 How is the tension in the string, T , related to
the mass of the hanging weight?

P2 The figure below shows the N = 1, 2, and 3
patterns of vibration. Suppose the length of the
string is one meter. In each case, find the wave-
length.

P3 Generalize your numerical results from P2 to
give a general equation for λ in terms of N and L,
the length of the string. Check its units, and check
that it recovers the special cases done numerically in
P2.

P4 How can the velocity of the waves be deter-
mined if you know the frequency, f , the length of
the string, L, and the number of humps, N?

Self-Check
Do your analysis in lab.

Analysis
Use the graphing technique given in appendix 5 to
see if you can find a power-law relationship between
the velocity of the waves in the string and the ten-
sion in the string. Note that you can omit constant
factors without affecting the exponent. (Do not just
try to find the correct power law in the textbook,
because besides observing the phenomenon of reso-
nance, the point of the lab is to prove experimen-
tally what the power-law relationship is, and to test
whether this is always a good approximation in real
life.)
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4 Resonances of Sound

Apparatus
wave generator (Pasco PI-8127, in lab benches) 1/group
speaker (Thornton) . . . . . . . . . . . . . . . . . . . . . . . 1/group
100 mL graduated cylinder . . . . . . . . . . . . . . . 1/group
Linux computers with digital oscilloscope software
installed (see note above)
flexible whistling tube . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
tuning fork marked with frequency, mounted on a
wooden box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
aluminum rod, 3/4-inch dia, about 1 m long . . . . . 2
wood block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
thermometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Goals
Find the resonant frequencies of the air inside
a cylinder by two methods.

Measure the speeds of sound in air and in alu-
minum.

Introduction
In the womb, your first sensory experiences were of
your mother’s voice, and soon after birth you learned
to distinguish the particular sounds of your parents’
voices from those of strangers. The human ear-brain
system is amazingly sophisticated in its ability to
classify vowels and consonants, recognize people’s
voices, and analyze musical sound. Until the 19th-
century investigations of Helmholtz, the whole pro-
cess was completely mysterious. How could we so
easily tell a cello from a violin playing the same note?
A radio station in Chicago has a weekly contest in
which jazz fanatics are asked to identify instrumen-
talists simply by their distinctly individual timbres
— how is this possible?

Helmholtz found (using incredibly primitive nonelec-
tronic equipment) that part of the answer lay in the
relative strengths of the overtones. The psychologi-
cal sensation of pitch is related to frequency, e.g., 440
Hz is the note “A.” But a saxophonist playing the
note “A” is actually producing a rich spectrum of
frequencies, including 440 Hz, 880 Hz, 1320 Hz, and
many other multiples of the lowest frequency, known
as the fundamental. The ear-brain system perceives
all these overtones as a single sound because they are

all multiples of the fundamental frequency. (The Ja-
vanese orchestra called the gamelan sounds strange
to westerners partly because the various gongs and
cymbals have overtones that are not integer multi-
ples of the fundamental.)

One of the things that would make “A” on a clarinet
sound different from “A” on a saxophone is that the
880 Hz overtone would be quite strong for the sax-
ophone, but almost entirely missing for the clarinet.
Although Helmholtz thought the relative strengths
of the overtones was the whole story when it came
to musical timbre, actually it is more complex than
that, which is why electronic synthesizers still do not
sound as good as acoustic instruments. The timbre
depends not just on the general strength of the over-
tones but on the details of how they first build up
(the attack) and how the various overtones fade in
and out slightly as the note continues.

Why do different instruments have different sound
spectra, and why, for instance, does a saxophone
have an overtone that the clarinet lacks? Many mu-
sical instruments can be analyzed physically as tubes
that have either two open ends, two closed ends, or
one open end and one closed end. The overtones
correspond to specific resonances of the air column
inside the tube. A complete treatment of the subject
is given in your textbook, but the basic principle is
that the resonant standing waves in the tube must
have an antinode (point of maximum vibration) at
any closed end of the tube, and a node (point of zero
vibration) at any open end.

Using the Wave Generator

The wave generator works like the amplifier of your
stereo, but instead of playing a CD, it produces a
sine wave whose frequency and amplitude you can
control. By connecting it to a speaker, you can con-
vert its electrical currents to sound waves, making
a pure tone. The frequency of the sine wave corre-
sponds to musical pitch, and the amplitude corre-
sponds to loudness.

Setup
Plug the speaker into the wave generator. The ba-
nana plugs go in the plugs marked OUTPUT. The
side of the banana plug converter with the tiny tab
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marked GND should be the one that goes into the
black output plug. Set the frequency to something
audible. Turn the amplitude knob up until you hear
a sound.

The wave generator and the speaker are not really
designed to work together, so if you leave the volume
up very high for a long time, it is possible to blow
the speaker or damage the wave generator. Also, the
sine waves are annoying when played continuously at
loud volumes!

Preliminary Observations

Observations
This lab has three parts, A, B, and C. It is not really
possible for more than one group to do part A in the
same room, both because their sounds interfere with
one another and because the noise becomes annoy-
ing for everyone. Your instructor will probably have
three groups working on part A at one time, one
group in the main room, one in the small side room,
and one in the physics stockroom. Meanwhile, the
other groups will be doing parts B and C.

A Direct Measurement of Resonances by Lis-
tening

Set up the graduated cylinder so its mouth is about
3 mm from the center of the speaker grille. Find
as many frequencies as possible at which the cylin-
der resonates. When you sweep through those fre-
quencies, the sound becomes louder. To make sure
you’re really hearing a resonance of the cylinder,
make sure to repeat each observation with the cylin-
der removed, and make sure the resonance goes away.
For each resonance, take several measurements of its
frequency — if you are careful, you can pin it down
to within ±10 Hz or so. You can probably speed
up your search significantly by calculating approxi-
mately where you expect the resonances to be, then
looking for them.

B Electronic Measurement of Resonances of
an Air Column

The resonances of the air column in a cylinder can
also be excited by a stream of air flowing over an
opening, as with a flute. In this part of the lab, you
will excite resonances of a long, flexible plastic tube
by grabbing it at one end and swinging it in a cir-
cle. The frequency of the sound will be determined
electronically. Note that your analysis for these res-
onances will be somewhat different, since the tube
is open at both ends, and it therefore has different

patterns of resonances from the graduated cylinder,
which was only open at one end.

To measure the frequency, you will use a computer
to analyze the sound. The Linux computers are the
ones with the right hardware and software. As a
warmup before attempting the actual measurements
with the whistling tube, try the following. First,
start up the program if nobody else has already done
so. It is called “scope,” and you can run it by double-
clicking on its icon on the desktop. In real time,
the program will monitor the sound coming into the
microphone, and display a graph of loudness versus
frequency. Try whistling. The frequency at which
you whistled should show up as a prominent peak.

Next you need to verify that you can actually mea-
sure a known frequency and reproduce its value. Be-
sides letting you practice using the software, this is
important because I’ve seen some cheap computer
sound input chips that produce frequencies that are
off by large amounts, like 10%. Put the microphone
near the wooden box that the tuning fork is mounted
on and hit the tuning fork gently with the rubber
mallet. To get an accurate frequency measurement,
you need to zoom in on the peak. To do this, click on
the peak to get an extreme close-up. To zoom back
out, click on the graph again. (The Zoom In button
doesn’t let you get close enough, so don’t use it for
this purpose.) When you get the graph you want to
see, you can freeze it by clicking on the Freeze/Go
button.

Once you have done these warmups, you are ready to
analyze the sound from the whistling tube. You only
need to analyze data from one frequency, although
if you’re not sure which mode you produced, it may
be helpful to observe the pattern of the frequencies.
(If you guess wrong about which mode it was, you’ll
find out, because the value you extract for the speed
of sound will be way off.)

C The Speed of Sound in Aluminum

The speed of sound in a solid is much faster than its
speed in air. In this part of the lab, you will extract
the speed of sound in aluminum from a measurement
of the lowest resonant frequency of a solid aluminum
rod. You will use the computer for an electronic
measurement of the frequency, as in part B.

Grab the rod with two fingers exactly in the mid-
dle, hold it vertically, and tap it on the lab bench.
You will hear two different notes sounding simul-
taneously. A quick look at their frequencies shows
that they are not in a 2:1 ratio as we would expect
based on our experiences with symmetric wave pat-
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terns. This is because these two frequencies in the
rod are actually two different types of waves. The
higher note is produced by longitudinal compression
waves, which means that an individual atom of alu-
minum is moving up and down the length of the rod.
This type of wave is analogous to sound waves in air,
which are also longitudinal compression waves. The
lower note comes from transverse vibrations, like a
vibrating guitar string. In the transverse vibrations,
atoms are moving from side to side, and the rod as
a whole is bending.

If you listen carefully, you can tell that the trans-
verse vibration (the lower note) dies out quickly, but
the longitudinal mode keeps going for a long time.
That gives you an easy way to isolate the longitudi-
nal mode, which is the one we’re interested in; just
wait for the transverse wave to die out before you
freeze the graph on the computer.

Identifying the mode of vibration
The rod is symmetric, so we expect its longitudi-
nal wave patterns to be symmetric, like those of the
whistling tube. The rod is different, however, be-
cause whereas we can excite a variety of wave pat-
terns in the tube by spinning it at different speeds,
we find we only ever get one frequency from the rod
by tapping it at its end: it appears that there is
only one logitudinal wave pattern that can be ex-
cited strongly in the rod by this method. The prob-
lem is that we then need to infer what the pattern
is.

Since you hold the rod at its center, friction should
very rapidly damp out any mode of vibration that
has any motion at the center. Therefore there must
be a node at the center. We also know that at the
ends, the rod has nothing to interact with but the
air, and therefore there is essentially no way for any
significant amount of wave energy to leak out; we
therefore expect that waves reaching the ends have
100% of their energy reflected. Since energy is pro-
portional to the square of amplitude, this means that
a wave with unit amplitude can be reflected from
the ends with an amplitude of either R = +1 (100%
uninverted reflection) or −1 (100% inverted). In the
R = −1 case, the reflected wave would cancel out the
incident wave at the end of the rod, and we would
have a node at the end, as in lab 3. In the R = +1
case, there would be an antinode. But when you
tap the end of the rod on the floor, you are evi-
dently exciting wave motion by moving the end, and
it would not be possible to excite vibrations by this
method if the vibrations had no motion at the end.
We therefore conclude that the rod’s pattern of vi-

bration must have a node at the center, and antinode
at the ends.

There is an infinite number of possible wave patterns
of this kind, but we will assume that the pattern
that is excited strongly is the one with the longest
wavelength, i.e., the only node is at the center, and
the only antinodes are those at the ends.

If you feel like it, there are a couple of possible tests
you can try to do to check whether this is the right
interpretation. One is to see if you can detect any
other frequencies of longitudinal vibration that are
excited weakly. Another is to predict where the
other nodes would be, if there were more than one,
and then see if the vibration is killed by touching
the rod there with your other hand; if there is a
node there, touching it should have no effect.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

P1 Skip this question if you were assigned problem
5-5 in Modern Physics. Find an equation to predict
the frequencies of the resonances in parts A and B.
Note that they will not be the same equations, since
one tube is symmetric and the other is asymmet-
ric. For the symmetric one, you could simply staple
your prelab from lab 3 onto the back. For the asym-
metric one, go through the same process that you
were explicitly led through in the prelab for lab 3.
This process starts with drawing the first few wave
patterns. It’s not necessary to define a variable N
analogous to the one defined in lab 3, and in fact it’s
not obvious how one could define such a thing as the
“number of humps” in the asymmetric case. Instead
of giving a single formula with an N in it, it’s fine to
list expressions for the first few frequencies, showing
the pattern.

Self-Check
Extract the speed of sound in air from either part
A or part B, without error analysis, and make sure
you get something reasonable. We don’t necessar-
ily expect it to be exactly the same as a standard
value, because it depends on conditions, especially
the temperature.
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Analysis
Make a graph of wavelength versus period for the
resonances of the graduated cylinder, check whether
it looks like it theoretically should, and if so, find
the speed of sound from its slope, with error bars,
as discussed in appendix 4.

Analyze part B either by using the same technique
(if you took data for multiple frequencies) or just by
solving algebraically for the speed of sound.

The effective length of the cylinder in part A should
be increased by 0.4 times its diameter to account for
the small amount of air beyond the end that also vi-
brates. For part B, where the whistling tube is open
at both ends, you should add 0.8 times its diameter.

When estimating error bars from part B, you may
be tempted to say that it must be perfectly accurate,
since it’s being done by a computer. Not so! The
graph only has a certain frequency resolution, and
in addition, the peak may be a little ragged.

Extract the speed of sound in aluminum from your
data in part C, including error bars.
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5 Refraction and Images

Apparatus
plastic box
propanol (1 liter/group, to be reused)
laser
spiral plastic tube and fiber optic cable for demon-
strating total internal reflection
ruler
protractor
butcher paper
funnel

Goals
Test whether the index of refraction of a liquid
is proportional to its density.

Observe the phenomena of refraction and total
internal reflection.

Locate a virtual image in a plastic block by
ray tracing, and compare with the theoretically
predicted position of the image.

Introduction
Without the phenomenon of refraction, the lens of
your eye could not focus light on your retina, and you
would not be able to see. Refraction is the bending
of rays of light that occurs when they pass through
the boundary between two media in which the speed
of light is different.

Refraction occurs for the following reason. Imagine,
for example, a beam of light entering a swimming
pool at an angle. Because of the angle, one side of
the beam hits the water first, and is slowed down.
The other side of the beam, however, gets to travel
in air, at its faster speed, for longer, because it enters
the water later — by the time it enters the water,
the other side of the beam has been limping along
through the water for a little while, and has not got-
ten as far. The wavefront is therefore twisted around
a little, in the same way that a marching band turns
by having the people on one side take smaller steps.

Quantitatively, the amount of bending is given by
Snell’s law:

ni sin θi = nt sin θt,

where the subscript i refers to the incident light and

incident medium, and t refers to the transmitted
light and the transmitting medium. This relation
can be taken as defining the quantities ni and nt,
which are known as the indices of refraction of the
two media. Note that the angles are defined with
respect to the normal, i.e., the imaginary line per-
pendicular to the boundary.

Also, not all of the light is transmitted. Some is re-
flected — the amount depends on the angles. In fact,
for certain values of ni, nt, and θi, there is no value
of θt that will obey Snell’s law (sin θt would have
to be greater than one). In such a situation, 100%
of the light must be reflected. This phenomenon is
known as total internal reflection. The word inter-
nal is used because the phenomenon only occurs for
ni > nt. If one medium is air and the other is plastic
or glass, then this can only happen when the incident
light is in the plastic or glass, i.e., the light is try-
ing to escape but can’t. Total internal reflection is
used to good advantage in fiber-optic cables used to
transmit long-distance phone calls or data on the in-
ternet — light traveling down the cable cannot leak
out, assuming it is initially aimed at an angle close
enough to the axis of the cable.

Although most of the practical applications of the
phenomenon of refraction involve lenses, which have
curved shapes, in this lab you will be dealing almost
exclusively with flat surfaces.

Preliminaries

Check whether your laser’s beam seems to be roughly
parallel.
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Observations
A Index of refraction of alcohol

The index of refraction is sometimes referred to as
the optical density. This usage makes sense, because
when a substance is compressed, its index of refrac-
tion goes up. In this part of the lab, you will test
whether the indices of refraction of different liquids
are proportional to their mass densities. Water has
a density of 1.00 g/cm3 and an index of refraction
of 1.33. Propanol has a density of 0.79 g/cm3. You
will find out whether its index of refraction is lower
than water’s in the same proportion. The idea is
to pour some alcohol into a transparent plastic box
and measure the amount of refraction at the inter-
face between air and alcohol.

Make the measurements you have planned in order
to determine the index of refraction of the alcohol.
The laser and the box can simply be laid flat on the
table. Make sure that the laser is pointing towards
the wall.

B Total internal reflection

Try shining the laser into one end of the spiral-
shaped plastic rod. If you aim it nearly along the
axis of the cable, none will leak out, and if you put
your hand in front of the other end of the rod, you
will see the light coming out the other end. (It will
not be a well-collimated beam any more because the
beam is spread out and distorted when it undergoes
the many reflections on the rough and curved inside
the rod.)

There’s no data to take. The point of having this as
part of the lab is simply that it’s hard to demonstrate
to a whole class all at once.

C A virtual image

Pour the alcohol back into the container for reuse,
and pour water into the box to replace it.

Pick up the block, and have your partner look side-
ways through it at your finger, touching the sur-
face of the block. Have your partner hold her own
finger next to the block, and move it around un-
til it appears to be as far away as your own finger.
Her brain achieves a perception of depth by subcon-
sciously comparing the images it receives from her
two eyes. Your partner doesn’t actually need to be
able to see her own finger, because her brain knows
how to position her arm at a certain point in space.
Measure the distance di, which is the depth of the
image of your finger relative to the front of the block.

Next we will use the laser to simulate the rays com-

ing from the finger, as shown in the figure. Shine
the laser at the point where your finger was origi-
nally touching the block, observe the refracted beam,
and draw it in. Repeat this whole procedure several
times, with the laser at a variety of angles. Finally,
extrapolate the rays leaving the block back into the
block. They should all appear to have come from the
same point, where you saw the virtual image. You’ll
need to photocopy the tracing so that each person
can turn in a copy with his or her writeup.
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Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

You should have already done the laser safety check-
list for the relativity lab.

P1 Laser beams are supposed to be very nearly
parallel (not spreading out or contracting to a focal
point). Think of a way to test, roughly, whether this
is true for your laser.

P2 Plan how you will determine the index of re-
fraction in part A.

P3 Skip this question if you were assigned problem
5-22 in Modern Physics. You have complete free-
dom to choose any incident angle you like in part
A. Discuss what choice would give the highest pos-
sible precision for the measurement of the index of
refraction.

Analysis
Using your data for part A, extract the index of re-
fraction of propanol, with error bars. Test the hy-
pothesis that the index of refraction is proportional
to the density in the case of water and propanol.

Using trigonometry and Snell’s law, make a the-
oretical calculation of di. You’ll need to use the
small-angle approximation sin θ ≈ tan θ ≈ θ, for θ
measured in units of radians. (For large angles, i.e.
viewing the finger from way off to one side, the rays
will not converge very closely to form a clear virtual
image.)

Explain your results in part C and their meaning.

Compare your three values for di : the experimental
value based on depth perception, the experimental
value found by ray-tracing with the laser, and the
theoretical value found by trigonometry.
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6 Geometric Optics

Apparatus
optical bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
converging lens, f = 50 cm, 5 cm diam
1/group converging lens, f = 5 cm . . . . . . . . 1/group
lamp and arrow-shaped mask . . . . . . . . . . . . . 1/group
frosted glass screen . . . . . . . . . . . . . . . . . . . . . . . 1/group

Goals
Observe a real image formed by a convex lens,
and determine its focal length.

Construct a telescope and measure its angular
magnification.

Introduction
The credit for invention of the telescope is disputed,
but Galileo was probably the first person to use one
for astronomy. He first heard of the new invention
when a foreigner visited the court of his royal pa-
trons and attempted to sell it for an exorbitant price.
Hearing through second-hand reports that it con-
sisted of two lenses, Galileo sent an urgent message
to his benefactors not to buy it, and proceeded to
reproduce the device himself. An early advocate of
simple scientific terminology, he wanted the instru-
ment to be called the “occhialini,” Italian for “eye-
thing,” rather than the Greek “telescope.”

His astronomical observations soon poked some gap-
ing holes in the accepted Aristotelian view of the
heavens. Contrary to Aristotle’s assertion that the
heavenly bodies were perfect and without blemishes,
he found that the moon had mountains and the sun
had spots (the marks on the moon visible to the
naked eye had been explained as optical illusions or
atmospheric phenomena). This put the heavens on
an equal footing with earthly objects, paving the
way for physical theories that would apply to the
whole universe, and specifically for Newton’s law of
gravity. He also discovered the four largest moons
of Jupiter, and demonstrated his political savvy by
naming them the “Medicean satellites” after the pow-
erful Medici family. The fact that they revolved
around Jupiter rather than the earth helped make
more plausible Copernicus’ theory that the planets
did not revolve around the earth but around the sun.

Galileo’s ideas were considered subversive, and many
people refused to look through his telescope, either
because they thought it was an illusion or simply
because it was supposed to show things that were
contrary to Aristotle.

The figure on the next page shows the simplest re-
fracting telescope. The object is assumed to be at
infinity, so a real image is formed at a distance from
the objective lens equal to its focal length, fo. By
setting up the eyepiece at a distance from the image
equal to its own focal length, fE , light rays that were
parallel are again made parallel.

The point of the whole arrangement is angular mag-
nification. The small angle α1 is converted to a large
α2. It is the small angular size of distant objects that
makes them hard to see, not their distance. There is
no way to tell visually whether an object is a thirty
meters away or thirty billion. (For objects within a
few meters, your brain-eye system gives you a sense
of depth based on parallax.) The Pleiades star clus-
ter can be seen more easily across many light years
than Mick Jagger’s aging lips across a stadium. Peo-
ple who say the flying saucer “looked as big as an
aircraft carrier” or that the moon “looks as big as
a house” don’t know what they’re talking about.
The telescope does not make things “seem closer”
— since the rays coming at your eye are parallel,
the final virtual image you see is at infinity. The
angular magnification is given by

MA = α2/α1

(to be measured directly in this lab)

MA = fo/fE

(theory).

Observations
A Focal length of the lenses

In this part of the lab, you’ll accurately determine
the focal lengths of the two lenses being used for the
telescope. They are poorly quality-controlled, and
I’ve found that the labeled values are off by as much
as 10%. If you’re only doing part A of the lab, then
you will only determine the focal length of one lens,
which is given to you as an unknown.
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A refracting telescope

Start with the short-focal-length lens you’re going to
use as your eyepiece. Use the lens to project a real
image on the frosted glass screen. For your object,
use the lamp with the arrow-shaped aperture in front
of it. Make sure to lock down the parts on the optical
bench, or else they may tip over and break the optics!

For the long-focal-length lens you’re going to use as
your objective, you will probably be unable to do a
similar determination on a one-meter optical bench.
Improvising a similar setup without the bench will
still give you a much more accurate value than the
one written on the label.

A careful measurement here pays off later by mak-
ing the focus in part B much easier to find. This is
especially true for the longer-focal-length lens. To
improve the quality of your result, do the kind of
thing they do at the optometrist — “which is bet-
ter, 1 or 2?” Have several people do independent
determinations of the best focus.

B The telescope

Use your optical bench and your two known lenses
to build a telescope. Since the telescope is a device
for viewing objects at infinity, you’ll want to take it
outside.

The best method for determining the angular magni-
fication is to observe the same object with both eyes
open, with one eye looking through the telescope and
one seeing the object without the telescope. Good
precision can be obtained, for example, by looking at
a large object like a coke machine, and determining
that a small part of it, whose size you can measure
with a ruler, appears, when magnified, to cover some
larger part of it, which you can also measure. The
figures on p. 25 show a simulation of what the su-
perimposed images should look like and of how it
would look if the telescope is not yet adjusted quite
correctly.

Your brain is not capable of focusing one eye at one

distance, and the other at another distance. There-
fore it’s important to get your telescope adjusted
precisely so that the image is at infinity. You can do
this by focusing your naked eye on a distant object,
and then moving the objective until the image pops
into focus in the other eye. Theoretically this would
be accomplished simply by setting the lenses at the
distance shown in the diagram, but in reality, a small
amount of further adjustment is necessary, because
of the uncertainty in the measured focal lengths.

A good quick test of the focus is to pick someone
who’s nearsighted and see if they can focus on the
image without their glasses on. If they can, then the
image is not at infinity, because nearsighted people
can’t focus on an image that’s at infinity.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

P1 Skip this question if you were assigned problem
11-17 from Modern Physics,. In part A, do you want
the object to be closer to the lens than the lens’
focal length, exactly at a distance of one focal length,
or farther than the focal length? What about the
screen?

P2 Plan what measurements you will make in part
A and how you will use them to determine the lenses’
focal length.

P3 Skip this question if you are only doing part A
of the lab. It’s disappointing to construct a telescope
with a very small magnification. Given a selection
of lenses, plan how you can make a telescope with
the greatest possible angular magnification.
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Analysis
Determine the focal length of the two lenses, with
error bars.

Find the angular magnification of your telescope from
your data, with error bars, and compare with the-
ory. Do they agree to within the accuracy of the
measurement? Give a probabilistic interpretation,
as in the example in appendix 2. See the example
at the end of appendix 3 of how to test for equality
between two numbers that both have error bars.
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7 Wave Optics

Apparatus
helium-neon laser
1/group optical bench with posts & holders 1/group
high-precision double slits . . . . . . . . . . . . . . . . 1/group
rulers
meter sticks
tape measures
butcher paper
black cloths for covering light sources

Goals
Observe evidence for the wave nature of light.

Determine the wavelength of the red light emit-
ted by your laser, by measuring a double-slit
diffraction pattern. (The part of the spectrum
that appears red to the human eye covers quite
a large range of wavelengths. A given type of
laser, e.g., He-Ne or solid-state, will produce
one very specific wavelength.)

Determine the approximate diameter of a hu-
man hair, using its diffraction pattern.

Introduction
Isaac Newton’s epitaph, written by Alexander Pope,
reads:

Nature and Nature’s laws lay hid in night.

God said let Newton be, and all was light.

Notwithstanding Newton’s stature as the greatest
physical scientist who ever lived, it’s a little ironic
that Pope chose light as a metaphor, because it was
in the study of light that Newton made some of his
worst mistakes. Newton was a firm believer in the
dogma, then unsupported by observation, that mat-
ter was composed of atoms, and it seemed logical to
him that light as well should be composed of tiny
particles, or “corpuscles.” His opinions on the sub-
ject were so strong that he influenced generations
of his successors to discount the arguments of Huy-
gens and Grimaldi for the wave nature of light. It
was not until 150 years later that Thomas Young
demonstrated conclusively that light was a wave.

Young’s experiment was incredibly simple, and could
probably have been done in ancient times if some
savvy Greek or Chinese philosopher had only thought
of it. He simply let sunlight through a pinhole in a
window shade, forming what we would now call a
coherent beam of light (that is, a beam consisting
of plane waves marching in step). Then he held a
thin card edge-on to the beam, observed a diffrac-
tion pattern on a wall, and correctly inferred the
wave nature and wavelength of light. Since Roemer
had already measured the speed of light, Young was
also able to determine the frequency of oscillation of
the light.

Today, with the advent of the laser, the production
of a bright and coherent beam of light has become
as simple as flipping a switch, and the wave nature
of light can be demonstrated very easily. In this lab,
you will carry out observations similar to Young’s,
but with the benefit of hindsight and modern equip-
ment.

Observations
A Determination of the wavelength of red light

Set up your laser on your optical bench. You will
want as much space as possible between the laser
and the wall, in order to let the diffraction pattern
spread out as much as possible and reveal its fine
details.

Tear off two small scraps of paper with straight edges.
Hold them close together so they form a single slit.
Hold this improvised single-slit grating in the laser
beam and try to get a single-slit diffraction pattern.
You may have to play around with different widths
for the slit. No quantitative data are required. This
is just to familiarize you with single-slit diffraction.

Make a diffraction pattern with the double-slit grat-
ing. See what happens when you hold it in your
hand and rotate it around the axis of the beam.

The diffraction pattern of the double-slit grating con-
sists of a rapidly varying pattern of bright and dark
bars, with a more slowly varying pattern superim-
posed on top. (See the figure two pages after this
page.) The rapidly varying pattern is the one that
is numerically related to the wavelength, λ, and the
distance between the slits, d, by the equation

∆θ = λ/d,
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A double-slit diffraction pattern.

where θ is measured in radians. To make sure you
can see the fine spacing, put your slits across the
room from the wall. To make it less likely that some-
one will walk through the beam and get the beam
in their eye, put some of the small desks under the
beam. The slit patterns we’re using actually have
three sets of slits, with the following dimensions:

w (mm) d (mm)
A .12 .6
B .24 .6
C .24 1.2

The small value of d is typically better, for two rea-
sons: (1) it produces a wider diffraction pattern,
which is easier to see; (2) it’s easy to get the beam
of the laser to cover both slits.

If your diffraction pattern doesn’t look like the one
in the figure on the following page, typically the rea-
son is that you’re only hitting one slit with the beam
(in which case you get a single-slit diffraction pat-
tern), or you’re not illuminating the two slits equally
(giving a funny-looking pattern with little dog-bones
and things in it).

As shown in the figure below, it is also possible to
have the beam illuminate only part of each slit, so
that the slits act effectively as if they had a smaller
value of d. The beam spreads as it comes out of the
laser, so you can avoid this problem by putting it
fairly far away from the laser (at the far end of the
optical bench).

Think about the best way to measure the spacing of
the pattern accurately. Is it best to measure from a
bright part to another bright part, or from dark to

dark? Is it best to measure a single spacing, or take
several spacings and divide by the number to find
what one spacing is?

Determine the wavelength of the light, in units of
nanometers. Make sure it is in the right range for
red light.

Check that the ∆θ you obtain is in the range pre-
dicted in prelab question P1. In the past, I’ve seen
cases where groups got goofy data, and I suspect
that it was because they were hitting a place on the
slits where there was a scratch, bump, or speck of
dust.

B Diameter of a human hair

Pull out one of your own hairs, hold it in the laser
beam, and observe a diffraction pattern. It turns
out that the diffraction pattern caused by a narrow
obstruction, such as your hair, has the same spac-
ing as the pattern that would be created by a sin-
gle slit whose width was the same as the diameter
of your hair. (This is an example of a general theo-
rem called Babinet’s principle.) Measure the spacing
of the diffraction pattern. (Since the hair’s diame-
ter is the only dimension involved, there is only one
diffraction pattern with one spacing, not superim-
posed fine and coarse patterns as in part A.) De-
termine the diameter of your hair. Make sure the
value you get is reasonable, and compare with the
order-of-magnitude guess you made in your prelab
writeup.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.
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Read the safety checklist.

P1 Look up the approximate range of wavelengths
that the human eye perceives as red. With d = 0.6
mm, predict the lowest and highest possible values
of ∆θ that could occur with red light.

P2 It is not practical to measure ∆θ directly using
a protractor. Suppose that a lab group finds that
27 fringes extend over 29.7 cm on their butcher pa-
per, which is on a wall 389 cm away from the slits.
They calculate ∆θ = tan−1(29.7 cm/(27× 389 cm))
= 2.83 × 10−3 rad. Simplify this calculation using
a small-angle approximation, and show that the re-
sulting error is negligible.

P3 Make a rough order-of-magnitude guess of the
diameter of a human hair.

Analysis
Determine the wavelength of the light and the diam-
eter of the hair, with error bars.
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8 The Michelson Interferometer

Apparatus
Michelson interferometer . . . . . . . . . . . . . . . . . .1/group
Na discharge tube . . . . . . . . . . . . . . . . . . . . . . . . 1/group
tools inside drawer . . . . . . . . . . . . . . . . . . . . 1 set/group
2× 4 piece of wood . . . . . . . . . . . . . . . . . . . . . . . 3/group
helium-neon laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
filters
Vernier calipers

Goals
Observe the basic operation of a Michelson in-
terferometer.

Investigate the feasibility of doing other mea-
surements with the instrument.

Introduction
The Michelson interferometer is a device for measur-
ing the wavelength of light, used most famously in
the Michelson-Morley experiment of 1887, which was
later interpreted as disproving the existence of the
luminiferous aether and supporting Einstein’s theory
of special relativity.

As shown in the figure, the idea is to take a beam
of light from the source, split it into two perpen-
dicular beams, send it to two mirrors, and then re-
combine the beams again. If the two light waves are
in phase when recombined, they will reinforce, but if
they are out of phase, they will cancel. Since the two
waves originated from the splitting of a single wave,

the only reason they would be out of phase would
be if the lengths of the two arms of the apparatus
were unequal. Mirror A is movable, and the distance
through which it moves can be controlled and mea-
sured extremely accurately using a micrometer con-
nected to the mirror via a lever. If mirror A is moved
by distance equal to a quarter of a wavelength of the
light, the total round-trip distance traveled by the
wave is changed by half a wavelength, which switches
from constructive to destructive interference, or vice
versa. Thus if the mirror is moved by a distance d,
and you see the light go through n complete cycles
of appearance and disappearance, you can conclude
that the wavelength of the light was λ = 2d/n.

Classic uses of a small Michelson interferometer are
to measure small differences in indices of refraction,
compare physical length standards to atomic ones,
and compare atomic standards to one another.

Apparatus
To make small and accurate adjustments of the mir-
ror easier to do, the micrometer is connected to it
through a lever that reduces the amount of move-
ment by a factor k, which is supposed to be exactly
equal to 5; the micrometer reads the bigger distance
D = kd that it actually travels itself, so the wave-
length is λ = 2D/kn.

When you look through the device, you see a cer-
tain field of view. Within that field of view are mir-
ror A and the image B′ of mirror B, which is nearly
superimposed on A. The path-length difference be-
tween the two waves can be thought of as the dis-
tance between A and B′. The field of view covers
a certain small but finite range of angles, forming a
narrow cone with its vertex at your eye. For rays
forming a small angle α relative to the axis, the ef-
fect is to multiply the path-length difference by a
factor of cosα. If the two arms of the interferom-
eter are exactly equal, then the path-length differ-
ence between them is zero, and multiplying it by
cosα has no effect. But when the arms are unequal,
the condition for constructive or destructive inter-
ference becomes dependent on α, and the result is
that you see a bull’s-eye pattern of concentric circu-
lar fringes. When you turn the knob, these fringes
expand or contract, appearing from or disappearing
into the center. The more equal the two arms, the
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smaller the number of fringes.

The setup also includes a compensating plate, de-
scribed in the Wikipedia article on the Michelson
interferometer.

Setup
Turn on the sodium discharge tube, and let it warm
up until it’s yellow.

Remove the drawer from the box, and take out the
tool kit. Unscrew the screws on the bottom of the
box that lock the interferometer to the floor of the
box, and very carefully take the instrument out of
the box. Screw the two aluminum legs into the bot-
tom of the interferometer, and lay a piece of wood
flat under the third leg, which is a threaded rod; this
makes the apparatus level.

Place the discharge tube near the entrance window
of the apparatus. If you look through the viewing
window, you will see the image of the tube itself,
reflected through the mirrors. To make this into a
uniform circle of light, place the ground glass screen
(inside the bag of tools) in the bracket at the en-
trance window.

Mirror B needs to be perfectly perpendicular to mir-
ror A, and its vertical plane needs to be matched to
mirror A’s. This is adjusted using the knobs on mir-
ror B, one for vertical adjustment and one for hor-
izontal. A rough initial adjustment can be done by
aligning the two images of the circular entrance win-
dow. You can then hang the metal pointer (from the
bag of tools) on the top of the ground glass screen,
and do a better adjustment so that the two images of
the pointer’s tip coincide. You should now see a set
of very fine concentric circular interference fringes,
centered on a point outside of the field of view. The
final, fine adjustment is obtained by bringing the
center of this pattern to the center of the field of
view.

A Basic Operation

To get an idea of the basic operation of the instru-
ment, you’ll perform a rough measurement of the
wavelength of the light emitted by a discharge tube.
This is not really a task for which the spectrometer is
well suited for giving high-precision results, but you
should be able to approximately verify the known
wavelength.

The micrometer has a millimeter scale running from
0 to 25 mm, with half-millimeter divisions on the
bottom. To take a reading on it, first read the

number of millimeters and half-millimeters based on
where the edge of the cylindrical rotating part lies on
this scale. Then add on the reading from the vernier
scale that runs around the circumference of the ro-
tating part, which runs from 0.000 to 0.500 mm. You
should be able to estimate to the nearest thousandth
of a millimeter (tenth of a vernier division).

While looking at the interference fringes, turn the
knob on the micrometer. You will see them either
expand like smoke rings, or contract and disappear
into the center, depending on which way you turn
the knob. Rotate the knob while counting at least
10 or 20 fringes, and record the two micrometer read-
ings before and after. The difference between these
is D. It helps if you prop your head on the table,
and move the micrometer knob smoothly and contin-
uously. Moving your head disturbs the pattern, and
halting the micrometer knob tends to cause backlash
that confuses the count of fringes by plus or minus
one.

For the reasons described in part C, the contrast
fades in and out as you move mirror B. This is prob-
ably what limits the number of fringes you can count.

Check that you get approximately the right wave-
length (check on Wikipedia for the one you’re us-
ing).

Exploring Other Possibilities with
the instrument
In spring and fall of 2013, I had my students try a
variety of things with the interferometers. I want to
find a measurement that isn’t too difficult and that
uses the instrument for a purpose that it’s well suited
to. The best prospects seem to be the following.
Your group can pick either one, but I think B is
easier and probably more of a classic application.

B Unknown index of refraction

The Michelson interferometer is unusual in its abil-
ity to work with white light. This is because it’s
possible to get into the position where the lengths
of the two arms are equal, so that constructive in-
terference occurs at the center of the bull’s eye for
all wavelengths. At any other position, we get a
random mixture of constructive and destructive in-
terference for all the different wavelengths that are
present. In fact, this allows the equal-arm condition
to be determined extremely accurately. It’s hard to
think of any other technique that allows two large
distances to be made equal to within micrometers
or nanometers!
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Using this technique, one can accurately determine
the unknown index of refraction of thin piece of some
material such as a glass microscope slide. The idea is
to equalize the arms, then insert the unknown and
readjust the interferometer in order to restore the
interference pattern. In the new condition, it’s not
the lengths of the two arms that are equal but their
optical lengths, i.e., the time it takes light to travel
along them.

In fall 2013 I had one group that tried this technique
and seemed to succeed in measuring the index of re-
fraction of a thin glass microscope slide; the index of
refraction came out to be in a reasonable range for
glass, although different types of glass cover a wide
range. Unforseen difficulties made spring 2014 a dis-
aster. In the future I would like to see if most or all
of the groups can get this to work, and reproduce
each other’s results for slides made of the same type
of glass. If that works, then I would like to refine
the technique to work with something else besides
the microscope slides that would either have some
intrinsic interest or allow a high-precision measure-
ment. A possibility is to use cuvettes with distilled
water and a salt solution, and measure the difference
in index of refraction between the two.

C Spacing of the sodium doublet

Essentially the only way scientists have of getting
detailed, high-precision information about the struc-
ture of atoms and nuclei is by measuring the set of
wavelengths of light they emit. As you’ll see later
in the course, these wavelengths can be related to
the sizes of the “quantum jumps” between different
energy levels of the atom. Each of these wavelengths
is referred to as a “line,” because in some types of
spectrometers that’s what they look like, and the
whole set of lines is called the spectrum of that atom.
An unfortunate fact of life for the spectroscopist is
that the spectrum often contains “doublets,” mean-
ing lines that are very close together and hard to
distinguish, and in fact the yellow line in the sodium
spectrum that you measured in part A is really a
doublet whose members differ in wavelength by a
fraction of a nanometer.

The Michelson interferometer is well adapted to a
certain sneaky trick for measuring the difference in
wavelength between two lines in a doublet, even when
the difference is extremely small, as it is for sodium.
The idea is that if the lines are roughly equal in
intensity, then the bull’s-eye pattern you see is ac-
tually two bull’s-eye patterns superimposed on top
of one another. If you move the micrometer to a
random position, then it’s a matter of chance how

well these two patterns agree. They could happen
to agree perfectly, in which case the bull’s eye would
look just as distinct as if there were only one line,
but they could also disagree perfectly, so that there
would no contrast at all between light and dark. The
ancient lab manual says: “Loosen the carriage lock
screw and move the carriage by hand. Note that
the fringes pass alternately from a condition of high
contrast to one of almost complete disappearance.
With the micrometer screw set near one of its ex-
treme limits and the carriage at one of the condi-
tions of almost complete disappearance, tighten the
carriage lock screw.” Then you’re supposed to move
to another condition of minimum contrast and take
another micrometer reading.

The analysis then works like this. Let the wave-
lengths constituting the doublet be be λ1 and λ2,
differing by ∆λ = λ2 − λ1. Let d1 and d2 be two
successive path-length differences at which there is
maximum contrast. Traveling a distance ∆d be-
tween these two values of d, we pass through N + 1
cycles worth of the shorter λ1 and N cycles for the
longer λ2, so 2∆d = (N + 1)λ1 = Nλ2. Algebra
gives ∆λ = λ1λ2/2∆d. The fractional precision with
which we can measure ∆d equals the fractional pre-
cision with which you can measure ∆λ, which is a
huge win, because ∆λ is very small.

Attempt to measure ∆λ for the yellow sodium dou-
blet.
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9 Electron Diffraction

Apparatus
cathode ray tube (Leybold 555 626)
high-voltage power supply (new Leybold)
100-kΩ resistor with banana-plug connectors
Vernier calipers

Goals
Observe wave interference patterns (diffraction
patterns) of electrons, demonstrating that elec-
trons exhibit wave behavior as well as particle
behavior.

Learn what it is that determines the wave-
length of an electron.

Introduction
The most momentous discovery of 20th-century physics
has been that light and matter are not simply made
of waves or particles — the basic building blocks of
light and matter are strange entities which display
both wave and particle properties at the same time.
In our course, we have already learned about the
experimental evidence from the photoelectric effect
showing that light is made of units called photons,
which are both particles and waves. That proba-
bly disturbed you less than it might have, since you
most likely had no preconceived ideas about whether
light was a particle or a wave. In this lab, however,
you will see direct evidence that electrons, which you
had been completely convinced were particles, also
display the wave-like property of interference. Your
schooling had probably ingrained the particle inter-
pretation of electrons in you so strongly that you
used particle concepts without realizing it. When
you wrote symbols for chemical ions such as Cl−

and Ca2+, you understood them to mean a chlorine
atom with one excess electron and a calcium atom
with two electrons stripped off. By teaching you to
count electrons, your teachers were luring you into
the assumption that electrons were particles. If this
lab’s evidence for the wave properties of electrons
disturbs you, then you are on your way to a deeper
understanding of what an electron really is — both
a particle and a wave.

The electron diffraction tube. The distance labeled as
13.5 cm in the figure actually varies from about 12.8 cm
to 13.8 cm, even for tubes that otherwise appear iden-
tical. This doesn’t affect your results, since you’re only
searching for a proportionality.

Method
What you are working with is basically the same
kind of vacuum tube as the picture tube in your tele-
vision. As in a TV, electrons are accelerated through
a voltage and shot in a beam to the front (big end)
of the tube, where they hit a phosphorescent coat-
ing and produce a glow. You cannot see the electron
beam itself. There is a very thin carbon foil (it looks
like a tiny piece of soap bubble) near where the neck
joins the spherical part of the tube, and the elec-
trons must pass through the foil before crossing over
to the phosphorescent screen.

The purpose of the carbon foil is to provide an ultra-
fine diffraction grating — the “grating” consists of
the crystal lattice of the carbon atoms themselves!
As you will see in this lab, the wavelengths of the
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electrons are very short (a fraction of a nanometer),
which makes a conventional ruled diffraction grating
useless — the closest spacing that can be achieved on
a conventional grating is on the order of one microm-
eter. The carbon atoms in graphite are arranged in
sheets, each of which consists of a hexagonal pattern
of atoms like chicken wire. That means they are not
lined up in straight rows, so the diffraction pattern
is slightly different from the pattern produced by a
ruled grating.

Also, the carbon foil consists of many tiny graphite
crystals, each with a random orientation of its crys-
tal lattice. The net result is that you will see a bright
spot surrounded by two faint circles. The two circles
represent cones of electrons that intersect the phos-
phor. Each cone makes an angle θ with respect to
the central axis of the tube, and just as with a ruled
grating, the angle is given by

sin θ = λ/d,

where λ is the wavelength of the wave. For a ruled
grating, d would be the spacing between the lines.
In this case, we will have two different cones with
two different θ’s, θ1 and θ2, corresponding to two
different d′s, d1 and d2. Their geometrical meaning
is shown below.1

The carbon atoms in the graphite crystal are arranged
hexagonally.

Safety

This lab involves the use of voltages of up to 6000 V.
Do not be afraid of the equipment, however; there
is a fuse in the high-voltage supply that limits the
amount of current that it can produce, so it is not
particularly dangerous. Read the safety checklist on

1See http://bit.ly/XxoEYr for more information.

high voltage in Appendix 6. Before beginning the
lab, make sure you understand the safety rules, ini-
tial them, and show your safety checklist to your
instructor. If you don’t understand something, ask
your instructor for clarification.

In addition to the high-voltage safety precautions,
please observe the following rules to avoid damaging
the apparatus:

The tubes cost $1000. Please treat them with
respect! Don’t drop them! Dropping them would
also be a safety hazard, since they’re vacuum tubes,
so they’ll implode violently if they break.

Do not turn on anything until your instructor
has checked your circuit.

Don’t operate the tube continuously at the
highest voltage values (5000-6000 V). It produces
x-rays when used at these voltages, and the strong
beam also decreases the life of the tube. You can
use the circuit on the right side of the HV supply’s
panel, which limits its own voltage to 5000 V. Don’t
leave the tube’s heater on when you’re not actually
taking data, because it will decrease the life of the
tube.

Setup
You setup will consist of two circuits, a heater circuit
and the high-voltage circuit.

The heater circuit is to heat the cathode, increas-
ing the velocity with which the electrons move in
the metal and making it easier for some of them
to escape from the cathode. This will produce the
friendly and nostalgia-producing yellow glow which
is characteristic of all vacuum-tube equipment. The
heater is simply a thin piece of wire, which acts as
a resistor when a small voltage is placed across it,
producing heat. Connect the heater connections, la-
beled F1 and F2, to the 6-V AC outlet at the back
of the HV supply.

The high-voltage circuit’s job is to accelerate the
electrons up to the desired speed. An electron that
happens to jump out of the cathode will head “down-
hill” to the anode. (The anode is at a higher voltage
than the cathode, which would make it seem like
it would be uphill from the cathode to the anode.
However, electrons have negative charge, so they’re
like negative-mass water that flows uphill.) The high
voltage power supply is actually two different power
supplies in one housing, with a left-hand panel for
one and a right-hand panel for the other. Connect
the anode (A) and cathode (C) to the right-hand
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panel of the HV supply, and switch the switch on
the HV supply to the right, so it knows you’re using
the right-hand panel.

The following connections are specified in the doc-
umentation, although I don’t entirely understand
what they’re for. First, connect the electrode X to
the same plug as the cathode.2 Also, connect F1 to
C with the wire that has the 100-kΩ resistor spliced
into it. The circuit diagram on page 37 summarizes
all this.

Check your circuit with your instructor before turn-
ing it on!

Observations
You are now ready to see for yourself the evidence of
the wave nature of electrons, observe the diffraction
pattern for various values of the high voltage, and
figure out what determines the wavelength of the
electrons. You will need to do your measurements
in the dark.

Important: As of 2018, some of our tubes are start-
ing to die, and we will not be able to buy replace-
ments until 2020. For this reason, please take the
following steps to extend the remaining lifetimes of
the working tubes. (1) Don’t take too many data
points. Change the voltage in steps of 1.0 kV, not
smaller steps. (2) Turn the knob on the high voltage
power supply all the way down to zero except when
you’re actually measuring a diffraction fringe. (3)
Try to get all your data-taking done without leaving
the heater circuit on for more than about 30 minutes.

You will measure the θ’s, and thus determine the
wavelength, λ, for several different voltages. Each
voltage will produce electrons with a different veloc-
ity, momentum, and energy.

Hints:

While measuring the diffraction pattern, don’t
touch the vacuum tube — the static electric
fields of one’s body seem to be able to perturb
the pattern.

It is easiest to take measurements at the high-
est voltages, where the electrons pack a wallop
and make nice bright rings on the phosphor.
Start with the highest voltages and take data
at lower and lower voltages until you can’t see
the rings well enough to take precise data. To

2If you look inside the tube, you can see that X is an extra
electrode sandwiched in between the anode and the cathode.
I think it’s meant to help produce a focused beam.

get unambiguous results, you’ll need to take
data with the widest possible range of voltages.

Analysis
Once you have your data, the idea is to plot λ as a
function of quantities such as KE, p, 1/KE, or 1/p.
If the graph is a straight line through the origin,
then the experiment supports the hypothesis that
the wavelength is proportional to that quantity. You
can simplify your analysis by leaving out constant
factors, and P5 asks you to consider how you can
rule out some of these possibilities without having
to make all the graphs.

What does λ seem to be proportional to? Your data
may cover a small enough range of voltage that more
than one graph may look linear. However, only one
will be consistent with a line that passes through the
origin, as it must for a proportionality. This is why
it is important to have your graph include the origin.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

The week before you are to do the lab, briefly famil-
iarize yourself visually with the apparatus.

Read the high voltage safety checklist.

P1 The figure shows the vacuum tube as having
a particular shape, which is a sphere with the foil
and phosphor at opposite ends of a diamater. In re-
ality, the tubes we’re using now are not quite that
shape. To me, they look like they may have been
shaped so that the phosphor surface is a piece of a
sphere centered on the foil. Therefore the arc lengths
across the phosphor can be connected to diffraction
angles very simply via the definition of radian mea-
sure. Plan how you will do this.

P2 If the voltage difference across which the elec-
trons are accelerated is V , and the known mass and
charge of the electron are m and e, what are the
electrons’ kinetic energy and momentum, in terms
of V ,m, and e? (As a numerical check on your re-
sults, you should find that V = 5700 V gives KE =
9.1× 10−16 J and p = 4.1× 10−23 kg·m/s.)

P3 All you’re trying to do based on your graphs is
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The circuit for the new setup.

judge which one could be a graph of a proportional-
ity, i.e., a line passing through the origin. Because
of this, you can omit any constant factors from the
equations you found in P2. When you do this, what
do your expressions turn out to be?

P4 Why is it not logically possible for the wave-
length to be proportional to both p and KE? To
both 1/p and 1/KE?

P5 I have suggested plotting λ as a function of
p, KE, 1/p and 1/KE to see if λ is directly propor-
tional to any of them. Once you have your raw data,
how can you immediately rule out two of these four
possibilities and avoid drawing the graphs?

P6 On each graph, you will have two data-points
for each voltage, corresponding to two different mea-
surements of the same wavelength. The two wave-
lengths will be almost the same, but not exactly
the same because of random errors in measuring the
rings. Should you get the wavelengths by combining
the smaller angle with d1 and the larger angle with
d2, or vice versa?
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10 Relativity

Apparatus
magnetic balance . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
meter stick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
multimeter (BK or PRO-100, not HP) . . . . 1/group
laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1/group
vernier calipers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
photocopy paper, for use as a weight
DC power supply (Mastech, 30 A)
box of special cables
scissors

Goal
Measure the speed of light.

Introduction
Oersted discovered that magnetism is an interac-
tion of moving charges with moving charges, but
it wasn’t until almost a hundred years later that
Einstein showed why such an interaction must exist:
magnetism occurs as a direct result of his theory of
relativity. Since magnetism is a purely relativistic
effect, and relativistic effects depend on the speed of
light, any measurement of a magnetic effect can be
used to determine the speed of light.

Setup
The idea is to set up opposite currents in two wires,
A and B, one under the other, and use the repulsion
between the currents to create an upward force on
the top wire, A. The top wire is on the arm of a bal-
ance, which has a stable equilibrium because of the
weight C hanging below it. You initially set up the
balance with no current through the wires, adjusting
the counterweight D so that the distance between the
wires is as small as possible. What we care about is
really the center-to-center distance (which we’ll call
R), so even if the wires are almost touching, there’s
still a millimeter or two worth of distance between
them. By shining a laser at the mirror, E, and ob-
serving the spot it makes on the wall, you can very
accurately determine this particular position of the
balance, and tell later on when you’ve reproduced it.

If you put a current through the wires, it will raise

wire A. The torque made by the magnetic repulsion
is now canceling the torque made by gravity directly
on all the hardware, such as the masses C and D.
This gravitational torque was zero before, but now
you don’t know what it is. The trick is to put a tiny
weight on top of wire A, and adjust the current so
that the balance returns to the position it originally
had, as determined by the laser dot on the wall. You
now know that the gravitational torque acting on the
original apparatus (everything except for the weight)
is back to zero, so the only torques acting are the
torque of gravity on the staple and the magnetic
torque. Since both these torques are applied at the
same distance from the axis, the forces creating these
torques must be equal as well. You can therefore
infer the magnetic force that was acting.

For a weight, you can carefully and accurately cut
a small rectangular piece out of a sheet of photo-
copy paper. In fall 2013, my students found that
500 sheets of SolCopy 20 lb paper were 2307.0 g.
About 1/100 of a sheet seemed to be a good weight
to use.

It’s very important to get the wires A and B perfectly
parallel. The result depends strongly on the small
distance R between their centers, and if the wires
aren’t straight and parallel, you won’t even have a
well defined value of R.

The following technique allows R to be measured
accurately. The idea is to compare the position of
the laser spot on the wall when the balance is in
its normal position, versus the position where the
wires are touching. Using a small-angle approxi-
mation, you can then find the angle θr by which
the reflected beam moved. This is twice the angle
θm = θr/2 by which the mirror moved.1 Once you

1To see this, imagine the following example that is unreal-
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know the angle by which the moving arm of the ap-
paratus moved, you can accurately find the air gap
between the wires, and then add in twice the radius
of the wires, which can be measured accurately with
vernier calipers. For comparison, try to do as good a
job as you can of measuring R directly by position-
ing the edges of the vernier calipers at the centers
of the wires. If the two values of R don’t agree, go
back and figure out what went wrong; one possibil-
ity is that your wire is slightly bent and needs to be
straightened.

You need to minimize the resistance of the appara-
tus, or else you won’t be able to get enough current
through it to cancel the weight of the staple. Most
of the resistance is at the polished metal knife-edges
that the moving part of the balance rests on. It may
be necessary to clean the surfaces, or even to freshen
them a little with a file to remove any layer of oxi-
dation. Use the separate BK meter to measure the
current — not the meter built into the power supply.

The power supply has some strange behavior that
makes it not work unless you power it up in exactly
the right way. It has four knobs, going from left to
right: (1) current regulation, (2) over-voltage pro-
tection, (3) fine voltage control, (4) coarse voltage
control. Before turning the power supply on, turn
knobs 1 and 2 all the way up, and knobs 3 and 4 all
the way down. Turn the power supply on. Now use
knobs 3 and 4 to control how much current flows.

Analysis
The first figure below shows a model that explains
the repulsion felt by one of the charges in wire A
due to all the charges in wire B. This is represented
in the frame of the lab. For convenience of anal-
ysis, we give the model some unrealistic features:
rather than having positively charged nuclei at rest
and negatively charged electrons moving, we pretend
that both are moving, in opposite directions. Since
wire B has zero net density of charge everywhere, it
creates no electric fields. (If you like, you can ver-
ify this during lab by putting tiny pieces of paper
near the wires and verifying that they do not feel
any static-electrical attraction.) Since there is no
electric field, the force on the charge in wire A must
be purely magnetic.

The second figure shows the same scene from the

istic but easy to figure out. Suppose that the incident beam
is horizontal, and the mirror is initially vertical, so that the
reflected beam is also horizontal. If the mirror is then tilted
backward by 45 degrees, the reflected beam will be straight
up, θr = 90 degrees.

point of view of the charge in wire A. This charge
considers itself to be at rest, and it also sees the light-
colored charges in B as being at rest. In this frame
the dark-colored charges in B are the only ones mov-
ing, and they move with twice the speed they had in
the lab frame. In this frame, the particle in A is at
rest, so it can’t feel any magnetic force. The force
is now considered to be purely electric. This electric
force exists because the dark charges are relativisti-
cally contracted, which makes them more dense than
their light-colored neighbors, causing a nonzero net
density of charge in wire B.

We’ve considered the force acting on a single charge
in wire A. The actual force we observe in the ex-
periment is the sum of all the forces acting on all
such charges (of both signs). As in the slightly dif-
ferent example analyzed in section 11.1.1 of Simple
Nature, this effect is proportional to the product of
the speeds of the charges in the two wires, divided
by c2. Therefore the effect must be proportional to
the product of the currents over c2. In this exper-
iment, the same current flows through wire A and
then comes back through B in the opposite direction,
so we conclude that the force must be proportional
to I2/c2.

In the second frame, the force is purely electrical,
and as can easily be shown by Gauss’s law, the elec-
tric field of a charged wire falls off in proportion to
1/R, where R is the distance from the wire. Elec-
trical forces are also proportional to the Coulomb
constant k.
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The longer the wires, the more charges interact, so
we must also have a proportionality to the length `.

Putting all these factors together, we find that the
force is proportional to kI2`/c2R. We can easily
verify that the units of this expression are newtons,
so the only possible missing factor is something unit-
less. This unitless factor turns out to be 2 by Gauss’s
law. The result for the repulsive force between the
two wires is

F =
k

c2
· 2I2`

R
.

By solving this equation you can find c. Your final
result is the speed of light, with error bars. Compare
with the previously measured value of c and give a
probabilistic interpretation, as in the examples in
appendix 2.

In your writeup, give both the values of R (laser and
eyeball). The laser technique is inherently better, so
that’s the value you should use in extracting c, but I
want to see both values of R because some groups in
the past have had a bigger discrepancy than I would
have expected. If you have a large discrepancy, get
my attention during lab and we can see whether it
might be due to a bent wire, or some other cause.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

Do the laser safety checklist, Appendix 7, tear it out,
and turn it in at the beginning of lab. If you don’t
understand something, don’t initial that point, and
ask your instructor for clarification before you start
the lab.

P1 Show that the equation for the force between
the wires has units of newtons.

P2 Do the algebra to solve for c in terms of the
measured quantities.
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11 Polarization

Apparatus
laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1/group
calcite crystal (flattest available) . . . . . . . . . .1/group
polarizing films . . . . . . . . . . . . . . . . . . . . . . . . . . . 2/group
Na gas discharge tube . . . . . . . . . . . . . . . . . . . . 1/group
photovoltaic cell and collimator . . . . . . . . . . . 1/group

Goals
Make qualitative observations about the polar-
ization of light.

Test quantitatively the hypothesis that polar-
ization relates to the direction of the field vec-
tors in an electromagnetic wave.

Introduction
It’s common knowledge that there’s more to light
than meets the eye: everyone has heard of infrared
and ultraviolet light, which are visible to some other
animals but not to us. Another invisible feature of
the wave nature of light is far less well known. Elec-
tromagnetic waves are transverse, i.e., the electric
and magnetic field vectors vibrate in directions per-
pendicular to the direction of motion of the wave.
Two electromagnetic waves with the same wavelength
can therefore be physically distinguishable, if their
electric and magnetic fields are twisted around in
different directions. Waves that differ in this way
are said to have different polarizations.

An electromagnetic wave has electric and magnetic field
vectors that vibrate in the directions perpendicular to its
direction of motion. The wave’s direction of polarization is
defined as the line along which the electric field lies.

Maybe we polarization-blind humans are missing out
on something. Some fish, insects, and crustaceans

can detect polarization. Most sources of visible light
(such as the sun or a light bulb) are unpolarized.
An unpolarized beam of light contains a random
mixture of waves with many different directions of
polarization, all of them changing from moment to
moment, and from point to point within the beam.

Qualitative Observations
Before doing anything else, turn on your gas dis-
charge tube, so it will be warmed up when you are
ready to do part E.

A Double refraction in calcite

Place a calcite crystal on this page. You will see two
images of the print through the crystal.

To understand why this happens, try shining the
laser beam on a piece of paper and then inserting
the calcite crystal in the beam. If you rotate the
crystal around in different directions, you should be
able to get two distinct spots to show up on the
paper. (This may take a little trial and error, partly
because the effect depends on the correct orientation
of the crystal, but also because the crystals are not
perfect, and it can be hard to find a nice smooth
spot through which to shine the beam.)

In the refraction lab, you’ve already seen how a beam
of light can be bent as it passes through the interface
between two media. The present situation is similar
because the laser beam passes in through one face of
the crystal and then emerges from a parallel face at
the back. You have already seen that in this type of
situation, when the beam emerges again, its direc-
tion is bent back parallel to its original direction, but
the beam is offset a little bit. What is different here
is that the same laser beam splits up into two parts,
which bumped off course by different amounts.

What’s happening is that calcite, unlike most sub-
stances, has a different index of refraction depending
on the polarization of the light. Light travels at a
different speed through calcite depending on how the
electric and magnetic fields are oriented compared to
the crystal. The atoms inside the crystal are packed
in a three-dimensional pattern sort of like a stack of
oranges or cannonballs. This packing arrangement
has a special axis of symmetry, and light polarized
along that axis moves at one speed, while light polar-
ized perpendicular to that axis moves at a different
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speed.

It makes sense that if the original laser beam was
a random mixture of all possible directions of po-
larization, then each part would be refracted by a
different amount. What is a little more surprising is
that two separated beams emerge, with nothing in
between. The incoming light was composed of light
with every possible direction of polarization. You
would therefore expect that the part of the incoming
light polarized at, say, 45 ◦compared to the crystal’s
axis would be refracted by an intermediate amount,
but that doesn’t happen. This surprising observa-
tion, and all other polarization phenomena, can be
understood based on the vector nature of electric
and magnetic fields, and the purpose of this lab is
to lead you through a series of observations to help
you understand what’s really going on.

B A polarized beam entering the calcite

A single laser beam entering a calcite crystal breaks up
into two parts, which are refracted by different amounts.

The calcite splits the wave into two parts, polarized in per-
pendicular directions compared to each other.

We need not be restricted to speculation about what
was happening to the part of the light that entered
the calcite crystal polarized at a 45 ◦angle. You can
use a polarizing film, often referred to informally as a
“Polaroid,” to change unpolarized light into a beam
of only one specific polarization. In this part of the
lab, you will use a polarizing film to produce a beam
of light polarized at a 45 ◦angle to the crystal’s in-
ternal axis.

If you simply look through the film, it doesn’t look
like anything special — everything just looks dim-
mer, like looking through sunglasses. The light reach-

ing your eye is polarized, but your eye can’t tell that.
If you looked at the film under a microscope, you’d
see a pattern of stripes, which select only one direc-
tion of polarization of the light that passes through.

Now try interposing the film between the laser and
the crystal. The beam reaching the crystal is now
polarized along some specific direction. If you rotate
the film, you change beam’s direction of polariza-
tion. If you try various orientations, you will be able
to find one that makes one of the spots disappear,
and another orientation of the film, at a 90 ◦angle
compared to the first, that makes the other spot go
away. When you hold the film in one of these direc-
tions, you are sending a beam into the crystal that
is either purely polarized along the crystal’s axis or
purely polarized at 90 ◦to the axis.

By now you have already seen what happens if the
film is at an intermediate angle such as 45 ◦. Two
spots appear on the paper in the same places pro-
duced by an unpolarized source of light, not just a
single spot at the midpoint. This shows that the
crystal is not just throwing away the parts of the
light that are out of alignment with its axis. What
is happening instead is that the crystal will accept a
beam of light with any polarization whatsoever, and
split it into two beams polarized at 0 and 90 ◦compared
to the crystal’s axis.

This behavior actually makes sense in terms of the
wave theory of light. Light waves are supposed to
obey the principle of superposition, which says that
waves that pass through each other add on to each
other. A light wave is made of electric and magnetic
fields, which are vectors, so it is vector addition we’re
talking about in this case. A vector at a 45 ◦angle
can be produced by adding two perpendicular vec-
tors of equal length. The crystal therefore cannot
respond any differently to 45-degree polarized light
than it would to a 50-50 mixture of light with 0-
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degree and 90-degree polarization.

The principle of superposition implies that if the 0 ◦and
90 ◦polarizations produce two different spots, then the
two waves superimposed must produce those two spots,
not a single spot at an intermediate location.

C Two polarizing films

So far I’ve just described the polarizing film as a
device for producing polarized light. But one can
apply to the polarizing film the same logic of super-
position and vector addition that worked with the
calcite crystal. It would not make sense for the film
simply to throw away any waves that were not per-
fectly aligned with it, because a field oriented on a
slant can be analyzed into two vector components,
at 0 and 90 ◦with respect to the film. Even if one
component is entirely absorbed, the other compo-
nent should still be transmitted.

Based on these considerations, now think about what
will happen if you look through two polarizing films
at an angle to each other, as shown in the figure
above. Do not look into the laser beam! Just look
around the room. What will happen as you change
the angle θ?

D Three polarizing films

Now suppose you start with two films at a 90 ◦angle
to each other, and then sandwich a third film be-
tween them at a 45 ◦angle, as shown in the two fig-
ures above. Make a prediction about what will hap-
pen, and discuss your prediction with your instructor
before you make the actual observation.

Quantitative Observations
E Intensity of light passing through two polar-

izing films

In this part of the lab, you will make numerical mea-
surements of the transmission of initially unpolarized
light transmitted through two polarizing films at an
angle θ to each other. To measure the intensity of the
light that gets through, you will use a photovoltaic
cell, which is a device that converts light energy into
an electric current. The ones we’re using are of a
type known as a silicon photodiode.

You will use an ammeter to measure the current
flowing from the photocell when light is shining on
it. This is known as the “short-circuit current,” be-
cause the ammeter ideally has zero resistance, so it
acts like a short. Normally when you create a short
through an ammeter, it blows the fuse in the meter,
but here there is about 40 kΩ of internal resistance in
the silicon, which is a semiconductor. A photovoltaic
cell is a complicated nonlinear device, but I’ve found
empirically that under the conditions we’re using in
this experiment, the current is proportional to the
power of the light striking the cell: twice as much
light results in twice the current.1

This measurement requires a source of light that is
unpolarized, constant in intensity, has a wavelength
that the polaroids work with, and comes from a spe-
cific direction so it can’t get to the photocell without
going through the polaroids. The ambient light in
the room is nearly unpolarized, but varies randomly
as people walk in front of the light fixtures, etc. An
incandescent lightbulb doesn’t work, because it puts
out a huge amount of infrared light, which the sili-
con cell measures but the polaroids can’t work with.
A laser beam is constant in intensity, but as I was
creating this lab I found to my surprise that the

1It’s also possible to use the same cell with a voltmeter
across it, in which case we’d be measuring the “open-circuit
voltage;” but the open-circuit voltage varies in a much more
nonlinear way with the intensity of the light. When rooftop
photovoltaic cells are used to generate power, the resistance of
the load is neither zero nor infinity, and is chosen to maximize
the efficiency.
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light from the laser I tried was partially polarized,
with a polarization that varied over time. A more
suitable source of light is the sodium gas discharge
tube, which makes a nearly monochromatic, unpo-
larized yellow light. Make sure you have allowed it
to warm up for at least 15-20 minutes before using
it; before it warms up, it makes a reddish light, and
the polaroids do not work very well on that color.

Make measurements of the relative intensity of light
transmitted through the two polarizing films, using a
variety of angles θ. Don’t assume that the notches on
the plastic housing of the polarizing films are a good
indication of the orientation of the films themselves.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

P1 Given the angle θ between the polarizing films,
predict the ratio |E′|/|E| of the transmitted electric
field to the incident electric field.

P2 Based on your answer to P1, predict the ra-
tio P ′/P of the transmitted power to the incident
power.

P3 Sketch a graph of your answer to P2. Super-
imposed on the same graph, show a qualitative pre-
diction of how it would change if the polaroids were
not 100% perfect at filtering out one component of
the field.

Analysis
Discuss your qualitative results in terms of superpo-
sition and vector addition.

Graph your results from part E, and superimpose a
theoretical curve for comparison. Discuss how your
results compare with theory. Since your measure-
ments of light intensity are relative, just scale the
points so that their maximum matches that of the
experimental data. (You might think of comparing
the intensity transmitted through the two polaroids
with the intensity that you get with no polaroids
in the way at all. This doesn’t really work, how-
ever, because in addition to acting as polarizers, the
polaroids simply absorb a certain percentage of the
light, just as any transparent material would.)
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12 Radioactivity

Note to the lab technician: The isotope generator
kits came with 250 mL bottles of eluting solution
(0.9% NaCl in 0.04M HCl, made with deionized wa-
ter). If we ever run out of the solution, we can make
more from materials in the chem stockroom. The
GM counters have 9 V batteries, which should be
checked before lab.

Apparatus
isotope generator kit
Geiger-Müller (GM) counter
computer with Logger Pro software and LabPro in-
terface
“grabber” clamp and stand
wood blocks, 25 mm thick
pieces of steel, 17 mm thick

Goal
Determine the properties of an unknown radioactive
source.

Introduction
You’re a science major, but even if you weren’t, it
would be important for you as a citizen and a voter
to understand the properties of radiation. As an
example of an important social issue, many envi-
ronmentalists who had previously opposed nuclear
power now believe that its benefits, due to reduc-
tion of global warming, outweigh its problems, such
as disposal of waste. To understand such issues, you
need to learn to reason about radioactivity quanti-
tatively.

A radioactive substance contains atoms whose nu-
clei spontaneously decay into nuclei of a different
type. Nobody has ever succeeded in finding a phys-
ical law that would predict when a particular nu-
cleus will “choose” to decay. The process is random,
but we can make quantitative statements about how
quickly the process tends to happen. A radioactive
substance has a certain half-life, defined as the time
required before (on the average) 50% of its nuclei
will have decayed.

Safety
The radioactive source used in this lab is very weak.
It is so weak that it is exempt from government reg-
ulation, it can be sent in the mail, and when the col-
lege buys new equipment, it is legal to throw out the
old sources in the trash. The following table com-
pares some radiation doses, including an estimate of
the typical dose you might receive in this lab. These
are in units of microSieverts (µSv).

CT scan ∼ 10,000 µSv
natural background per year 2,000-7,000 µSv
health guidelines for exposure to
a fetus

1,000 µSv

flying from New York to Tokyo 150 µSv
this lab ∼ 80 µSv
chest x-ray 50 µSv

A variety of experiments seem to show cases in which
low levels of radiation activate cellular damage con-
trol mechanisms, increasing the health of the organ-
ism. For example, there is evidence that exposure
to radiation up to a certain level makes mice grow
faster; makes guinea pigs’ immune systems function
better against diphtheria; increases fertility in fe-
male humans, trout, and mice; improves fetal mice’s
resistance to disease; reduces genetic abnormalities
in humans; increases the life-spans of flour beetles
and mice; and reduces mortality from cancer in mice
and humans. This type of effect is called radiation
hormesis. Nobody knows for sure, but it’s possible
that you will receive a very tiny improvement in your
health from the radiation exposure you experience in
lab today.

Although low doses of radiation may be beneficial,
governments, employers, and schools generally prac-
tice a philosophy called ALARA, which means to
make radiation doses As Low As Reasonably Achiev-
able. You should adhere to this approach in this
lab. In general, internal exposure to radiation pro-
duces more of an effect than external exposure, so
you should not eat or drink during this lab, and
you should avoid getting any of the radioactive sub-
stances in an open cut. You should also reduce your
exposure by not spending an unnecessarily large amount
of time with your body very close to the source, e.g.,
you should not hold it in the palm of your hand for
the entire lab period.
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The source and the GM counter
You are supplied with a radioactive source packaged
inside a small plastic disk about the size of the spin-
dle that fits inside a roll of scotch tape.

Our radiation detector for this lab is called a Geiger-
Müller (GM) counter. It is is a cylinder full of gas,
with the outside of the cylinder at a certain voltage
and a wire running down its axis at another volt-
age. The voltage difference creates a strong electric
field. When ionizing radiation enters the cylinder,
it can ionize the gas, separating negatively charged
ions (electrons) and positively charged ones (atoms
lacking some electrons). The electric field acceler-
ates the ions, making them hit other air molecules,
and causing a cascade of ions strong enough to be
measured as an electric current.

If you look at the top side of the GM counter (behind
the top of the front panel), you’ll see a small window.
Non-penetrating radiation can only get in through
this thin layer of mica. (Gammas can go right in
through the plastic housing.)

Put the bottom switch on Audio. The top switch
doesn’t have any effect on the data collection we’ll
be doing with the computer.

Poisson Statistics
Although we will not be formally estimating error
bars in this lab, the following information will be
helpful in understanding what’s going on when you’re
taking data. When we have a large number of things
that may happen with some small probability, the
total number of them that do happen is called a
Poisson random variable (accent on the second syl-
lable). For example, the number of houses burglar-
ized in Fullerton this year is a Poisson random vari-
able. When you count the number of nuclear decays
in a certain time interval, the result is Poisson. The
helpful thing to know is that when a Poisson variable
has an average value N , its statistical uncertainty is√
N . So for example if your GM counter counts 100

clicks in one minute, this is 100± 10. Knowing this
will help you to have some idea whether, for exam-
ple, an apparent change in the count rate is actually
too small to be statistically meaningful, or whether
you need to count for longer in order to get reliable
results.

Observations
A Background

Use the GM counter to observe the background ra-
diation in the room. This radiation is probably a
combination of gamma rays from naturally occurring
minerals in the ground plus betas and gammas from
building materials such as concrete. If you like, you
can walk around the room and see if you can detect
any variations in the intensity of the background.

Estimate the rate at which the GM detector counts
when it is exposed only to background. Starting at
this point, it is more convenient to interface the GM
counter to the computer. Plug the cable into into
DIG/SONIC 1 on the LabPro interface. Start Log-
gerPro 3 on the computer, and open the file Probes
and Sensors : Radiation monitor : Counts versus
time. The interface is not able to automatically iden-
tify this particular sensor, so the software will ask
you to confirm that you really do have this type of
sensor hooked up; confirm this by clicking on Con-
nect.

Now when you hit the Collect button, the sensor
will start graphing the number of counts it receives
during successive 5-second intervals. The y axis of
the graph is counts per 5 seconds, and the x axis is
time.

Once you’ve made some preliminary observations,
try to get a good measurement of the background,
counting for several minutes so as to reduce the sta-
tistical errors. It is important to get a good mea-
surement of the background rate, because in later
parts of the lab you’ll need to subtract it from all
the other count rates you measure. For longer runs
like this, it is convenient to let the software collect
data for about a minute at a time, rather than 5
seconds. To get it to do this, do Experiment : Data
collection : 60 seconds/sample.

B Type of radiation

Your first task in the lab is to figure out whether the
source emits alpha, beta, or gamma radiation — or
perhaps some mixture of these. It is up to you to de-
cide how to do this, but essentially you want to use
the fact that they are absorbed differently in mat-
ter; referring to your textbook, you’ll see that the
historical labels α, β, and γ were assigned purely
on the basis of the differences in absorption, before
anyone even knew what they really were. Note that
the fact that you are able to detect the radiation
at all implies that at least some of the radiation is
able to penetrate the thin plastic walls of the source.
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Also keep in mind that the descriptions of absorp-
tion in a textbook are generalizations that do not
take into account the energy of the particles. For
example, low-energy betas could be absorbed by a
kleenex, whereas high-energy betas could penetrate
cardboard.

There are six things you could try to prove through
your measurements:

1. The source inside the plastic container emits
alphas.

2. The source does not emit alphas.

3. The source emits betas.

4. The source does not emit betas.

5. The source emits gammas.

6. The source does not emit gammas.

Try to figure out which of these six statements you
can either definitively prove or definitively disprove.
Because you are not allowed to extract the source
from the packaging, there will be some cases in which
you cannot draw any definitive conclusion one way
or the other.

C Distance dependence

Measure the count rate at several different distances
from the source. The goal is to find the mathemati-
cal form of this function (see Analysis, below). Dis-
tances of less than about 10 cm do not work well,
because the size of the GM tube is comparable to 10
cm.

D Absorption

Measure the reduction in count rate when a 25 mm
thick wood block is interposed between the source
and the detector, and likewise for 17 mm of steel.
Keep the distance from the source to the detector
constant throughout. Let the counter run for at least
five minutes each time. Based on these observations,
predict the count rate you would get with two 17-
mm thicknesses of steel instead of one. Test your
prediction.

E Decay curve

The source consists of a particular isotope of cesium;
we’ll refer to it as NNNCs, since the main goal of this
lab is to determine what the unknown isotope actu-
ally is. It decays to an isotope of barium, and rather
than decaying to the ground state of the barium nu-
cleus, it nearly always decays to an excited state,

which then emits the radiation you characterized in
part B. Although the half-life of the parent cesium
isotope is many years, the half-life of the excited iso-
tope in the barium daughter is short enough that it
can be observed during the lab period. However, if
the cesium and barium are not separated, then no
time variation will be observed, because the supply
of barium nuclei is being continuously replenished
by decay of the parent cesium.

To get around this, the source is packaged so that
when a weak acid solution is forced through it, a
small amount of barium is washed out. Note that the
yellow tape around the circumference of the source
has an arrow on it. This arrow points in the direc-
tion that you’re supposed to make the solution flow.
The isotope generator kit has coin-sized steel trays
on which to collect a few drops of the radioactive
solution.

Use the syringe to draw 1 mL of the acid solution
from the 250-mL bottle (labeled “eluting solution”).
Take one of the tiny coin-sized steel trays out of the
isotope generator kit and lay it on the lab bench.
Remove the little plugs from the top and bottom of
the radioactive source. Stick the syringe in the in-
flow hole, and use the plunger to force seven drops
of liquid out onto the tray. Note that the amount
of liquid that flows from the syringe into the source
is quite a bit more than the amount that comes out
into the tray. If you have solution left in the syringe
at the end of lab, squeeze it back out into the 250-mL
bottle.

Use the computer to collect data on the rate of decay
as a function of time. About 5 or 10 seconds per
sample works well.

When you’re done, make sure to shut off the GM
counter so that its battery doesn’t get drained.

Waste disposal
To get an idea of what a non-issue radioactive waste
disposal is in this lab, recall that it would be legal
to throw the entire source in the trash — although
we won’t actually do that. The amount of radioac-
tive material that you wash out in part E is a tiny
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fraction of this. Furthermore, essentially all the ra-
dioactivity is gone by the end of lab. It is therefore
not a problem to dump your seven drops of material
down the drain at the end of class.

There is also no chemical disposal issue with this tiny
amount of solution. It’s a few drops of very dilute
acid, equivalent to a little spritz of lemon juice.

Analysis
In part C, you should first subtract the background
rate from each datum. Then make a log-log plot as
described in appendix 5, and see if you can success-
fully describe the data using a power law. Note that,
just like a human, the GM counter cannot count
faster than a certain rate. This is because every
time it gets a count it completely discharges its volt-
age, and then it has to recharge itself again. For
this reason, it is possible that your data from very
small distances will not agree with the behavior of
the data at larger distances. The documentation
for these GM counters says that they can count at
up to about 3500 counts per second; this is only a
very rough guide, but it gives you some idea what
count rates should be expected to start departing
from ideal behavior.

Estimate the half-lives of any isotopes present in the
data. If you find that only one half-life is present,
you can simply determine the amount of time re-
quired for the count rate to fall off by a factor of
two. If the natural background count rate measured
in part A is significant, you will need to subtract
it from the raw data. If more than one half-life is
present, try plotting the logarithm of the count rate
as a function of time, and seeing if there are linear
sections on the graph. Note that this is all refer-
ring to the half-lives of any decay chain that occurs
after the cesium decays to barium. The half-life of
the cesium parent nucleus is much longer, and is not
measured in this experiment.

Consult the Wikipedia article “Isotopes of cesium.”
It has an extremely lengthy table of all the known
isotopes from very light ones (with far too few neu-
trons to be stable) to very heavy ones (with far too
many). Since the source was shipped to us through
the mail, and sits on the shelf in the physics stock-
room for semester after semester, you can tell that
the half-life of the cesium isotope must be fairly long
— at least on the order of years, not months. From
this information, you should be able to narrow down
the range of possibilities. (Half-lives in units of years
are listed with “a,” for “annum,” as the unit of time.

The notations m1 and m2 mean energy states that
are above the lowest-energy state.) The radioactive
isotopes from this remaining list of possibilities all
have their own Wikipedia articles, and these articles
give the properties of the daughter nuclei (isotopes
of barium and xenon), including the half-lives of any
gamma-emitting states. Look for one that has a half-
life that seems to match the one you measured in lab.
Having tentatively identified the unknown isotope as
this isotope of cesium, check against the results of
part B, where you determined the type of radiation
emitted.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

P1 Suppose that in part C you obtain the following
data:

r (cm) count rate (counts/2 min)
10 707
20 207
30 95

Suppose that the background rate you measure in
part A is 30 counts per 2 min. Use the technique
described in appendix 5 to see if the data can be
described by a power law, and if so, determine the
exponent.

P2 If a source emits gamma or beta radiation, then
the radiation spreads out in all directions, like an
expanding sphere. Based on the scaling of a sphere’s
surface area with increasing radius, how would you
theoretically expect the intensity of the radiation to
fall off with distance? Would it be a power law?
If so, what power? Why would you not expect the
same behavior for a source emitting alpha particles
into air?
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13 The Photoelectric Effect

Note to the lab technician: The Pasco SE-5509 Hg
gas discharge tubes have too many ways of being de-
stroyed by students,1 so let’s use the OS-9286 tubes
instead (the big black ones with the fins). That
means we don’t need the separate power supply for
the discharge tube (Pasco BEM-5007) or the track
that comes with the photodiode. We need wood
blocks to raise the photodiode to the same height
as the discharge tube.

Apparatus
hand-held diffraction gratings
Hg gas discharge tube (Pasco OS-9286)
photodiode (Pasco SE-5509)
power supply (Pasco BEM-5001)
high-sensitivity ammeter (Pasco BEM-5004)
wood blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3/group

Goals
Use the photoelectric effect to test predictions
of the wave and wave-particle models of light.

Introduction
The photoelectric effect, a phenomenon in which
light shakes an electron loose from an object, pro-
vided the first evidence for wave-particle duality:
the idea that the basic building blocks of light and
matter show a strange mixture of particle and wave
behaviors. At the turn of the twentieth century,
physicists assumed that particle and wave phenom-
ena were completely distinct. Young had shown that
light could undergo interference effects such as diffrac-
tion, so it had to be a wave. Since light was a wave
composed of oscillating electric and magnetic fields,
it made sense that when light encountered matter, it
would tend to shake the electrons. It was only to be
expected that something like the photoelectric effect
could happen, with the light shaking the electrons
vigorously enough to knock them out of the atom.

1The two main modes of destruction seem to be: (1) While
the discharge tube is connected to the power supply, students
monkey with the red 110V/220V switch on the power supply;
and (2) they don’t use the power supply and connect two AC
connectors together in order to connect the discharge tube
directly to the wall socket.

But once the effect was observed, physicists began
running into trouble interpreting how it behaved.
There were various variables they could adjust, such
as:

• the light’s frequency (color), and

• the light’s intensity (brightness).

Given these input conditions, there were outputs
they could look at, including

• any time delay before electrons began to pop
out,

• the rate at which the electrons then flowed
(measured as a current on an ammeter), and

• the amount of kinetic energy they had.

At the time this was considered an obscure tech-
nical topic, but experimentalists began generating
data, which theorists then had zero success in inter-
preting. Albert Einstein, better known today for the
theory of relativity, was the first to come up with the
radical, and correct, explanation, which involved a
fundamental rewriting of the laws of physics.

Setup
The Hg gas discharge tube emits light with several
different wavelengths. Turn on the discharge tube
immediately, because it takes a long time to warm
up.

The photodiode is a vacuum tube housed inside an-
other box, with a small hole to allow light to come in
and hit one of the electrodes (the cathode) inside the
vacuum tube. On the front of the box, covering the
hole, are two rotating wheels. The wheel that you
can see has five colored filters. Each of these filters
lets through only one of the five wavelengths of light
emitted by the Hg tube, so that you can control the
frequency.

The hole through which the light enters is actually
a hole in a second wheel, located behind the filter
wheel. By clicking that wheel into different position
we can select holes of different sizes, which lets in dif-
ferent amounts of light. Although this is convenient,
it doesn’t actually control the intensity of the light
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(watts per square meter) but only the total amount
(watts). Therefore we’ll just leave this set for the 2
mm hole.

There is an easier way to control the actual intensity
of the beam, which is that you can simply change the
distance between the discharge tube and the photo-
diode. The light from the discharge tube spreads
out in a cone, so that as you vary the distance to
the photodiode, the intensity falls off as the inverse
square of the distance.

There is a power supply used for applying an exter-
nal voltage to the photodiode. Although you don’t
actually want to apply that external voltage dur-
ing this part of the lab, it seems that the ammeter
won’t work until you hook up the power supply, so
you need to do that now. On the bottom right side
of the power supply are two banana plugs. Connect
these to the two plugs near the bottom of the pho-
todiode. To get the polarity right, connect the pos-
itive (red) output of the power supply to the anode
(marked A).

The photodiode has an output that can be connected
to a extremely sensitive ammeter to measure the rate
at which electrons are ejected from the cathode and
absorbed at the anode. Before connecting the am-
meter (labeled “DC Current Amplifier” on the front
panel), set it to its most sensitive scale (10−13 A)
and depress the button labeled “Calibration.” Since
the meter is not connected to anything, the current
is truly zero. Use the knob to force the meter to read
zero, and then let the calibration button out. Now
use a BNC cable to connect the photodiode to the
ammeter.

Once the discharge tube has warmed up, arrange
things so that you can see a spot of its light, e.g.,
by letting it fall on a white piece of paper. Hold the
diffraction grating up to your eye and look at the
light. In the first-order (m = ±1) fringes, you should
be able to see that the light contains a mixture of
four discrete wavelengths of visible light. There is
also an ultraviolet wavelength, which you may be
able to see as well if the paper fluoresces.

Now suppose we were considering the following pos-
sible models of light: (1) pure particle model, (2)
pure wave model, (3) a hybrid model in which light
has both particle and wave properties. You have just
observed diffraction of the light from your source.
Which of the models are consistent with this obser-
vation, and which are immediately ruled out?

The wavelengths are as follows:

color wavelength (nm)
ultraviolet 365
violet 405
blue 436
green 546
yellow 578

The circuit. The light creates an electric current, which
trickles back through the large but finite resistance of the
voltmeter.

Circuit

The figure above shows a circuit diagram of the setup.
Light comes in and knocks electrons out of the curved
cathode. If the voltage is turned off, there is no elec-
tric field, so the electrons travel in straight lines;
some will hit the anode, creating a current. If the
voltage is turned on, the electric field repels the elec-
trons from the wire electrode, and the current is re-
duced or perhaps even completely eliminated.

Observations
Although the photodiode box has filters on the front,
no filter is perfect, and therefore these will all let
in some stray light of wavelengths other than the
intended one. Therefore the room should be very
dark when you do your measurements.

A Time delay

As explored in the prelab, there may be some delay
between the time when the light is allowed to hit
the cathode and the time when electrons begin to
be ejected. If so, then we lack even a rough a priori
estimate of this time. Investigate this. If the time
seems to be extremely short, do what you planned
in the prelab to try to make it long enough to detect.
If the time is much too long, do the opposite so that
you can actually observe the photoelectric effect. If
you’re able to get the time delay into a range where
it’s measurable using eyeballs and a clock, do so. If
not, then try to set an upper or lower limit on it.
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B Energy of the electrons

Until you do the lab, it’s not obvious how much en-
ergy the electrons would have as they pop out of the
cathode. It could be some fixed number, or it could
depend on the conditions you choose, and it could
also have multiple values for the electrons produced
under a given set of conditions. In fact, we may
expect a range of values for two reasons.

(1) As explored in a prelab question, the electrons
will have random kinetic energies to start with, due
to their thermal motion

(2) The light penetrates to some depth in the cath-
ode, and an electron that starts at some depth will
lose some amount of energy as it then comes out
to the surface. The electron’s direction of motion
is random. If it happens to be toward the surface,
then the thickness of material that it traverses will
depend both on its initial depth and on its random
direction of motion.

This range of energies may have an upper limit for
a given set of experimental conditions. If so, then
by applying a high enough voltage you should be
able to eliminate the current completely. The mini-
mum voltage required to do this would be called the
stopping voltage.

Now you want to apply a voltage to the photodiode
using the DC power supply, which you previously
connected but didn’t use. There is a button between
the two LED readouts. Let this button out in order
to select a range of voltages from 0 to -4.5 V.

Find out whether there is a stopping voltage, and
if so, measure it for the conditions you’ve chosen.
If there is never a sharp cutoff, you should still be
able to determine some quantitative measure of the
voltage that corresponds to a typical energy for the
electrons, e.g., the voltage at which some fixed frac-
tion of the current is eliminated. From now on in the
lab manual, I’ll just refer to this as “the voltage” for
a given set of experimental conditions.

Determine the voltage, and compare with the esti-
mate in the prelab of what voltage would correspond
to the thermal motion of the electrons. Based on this
comparison, is the amount of energy involved in the
photoelectric effect much less than, much more than,
or on the same order of magnitude as the thermal
energy?

C Dependence of voltage on intensity

Vary the intensity of the light and determine whether
and how the voltage depends on intensity.

We have observed strange results sometimes, which
seem to occur because when the discharge tube is
very close to the photodiode, light gets in and hits
the anode (not just the cathode) and causes the pho-
toelectric effect in the wrong direction. This seems
to occur with the shorter wavelengths of light. You
should be able to tell if this is happening because
when you turn up the voltage high enough, you get a
current in the opposite direction. Check for this be-
havior and avoid taking data under conditions that
produce it.

D Dependence of voltage on frequency

Do the same thing for the frequency.

Analysis
The point of the analysis is to try to compare the
observed results with our expectations based on two
models of light: the pure wave model, and a model
in which light is both a particle and a wave — we’ve
seen above that a pure particle model is untenable.
For conceptual simplicity, however, we may find it
helpful to visualize the wave-particle model as if the
light was purely particle-like, so that a beam of light
would be like a stream of machine-gun bullets. This
is essentially what Einstein does in his 1905 paper.
He admits that this is not literally possible, but
doesn’t attempt a more detailed reconciliation of the
particle and wave pictures, which he doesn’t know
how to achieve. For this reason, the title of the paper
refers to the particle picture as a “heuristic,” which
means a kind of non-rigorous way of getting an an-
swer without using correct fundamental principles.

Time delay: You investigated the possible time de-
lay in the wave model in some detail in the prelab
and/or homework. In a particle model, what would
be your expectations about a time delay? Compare
with experiment.

Energy: Based on the particle model, we would ex-
pect one “bullet” of light to give its fixed amount of
energy to one electron, so that under a given set of
experimental conditions, there would be a maximum
possible kinetic energy for the electrons, achieved
when the electron originated very close to the sur-
face of the cathode. In the wave model it is more dif-
ficult to make a definite prediction. Did you observe
that there was a definite stopping voltage, or that
there was no definite cut-off in the current? Does
this allow you to test either model?

Dependence of energy on intensity: In the particle
model, a more intense beam of light would be one
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containing a larger number of particles (per unit of
cross-sectional area). In the wave model, a more in-
tense beam would be a higher-amplitude wave. Does
either model lead you to predict anything specific
about the dependence of voltage on intensity? Test
against experiment.

Dependence of energy on frequency: Does the (typi-
cal or maximum) energy of the electrons eV depend
on the light’s frequency f? If so, then in the particle
model this probably means that we’re observing a
change in the amount of energy per particle of light.
We can’t just equate the electron energy eV to the
energy of the particles of light, because the electrons
lose a fixed amount of energy (called the work func-
tion) as they emerge from the surface of the metal.
We can get around the issue of this constant offset by
finding the slope of eV versus f ; a constant offset on
the y axis doesn’t affect the slope of a graph. Let’s
call this constant h. Estimate its numerical value.
What units does it have? There is no such universal
constant in any of the classical laws of physics, so if
it pops up here, it indicates that some entirely new
physical theory is being probed.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

P1 Under the hypothesis that light is purely a wave,
the energy of a beam of light would be smoothly and
continuously accumulated by whatever it hit. There-
fore it should take some amount of time before an
electron could accumulate enough energy to pop out
of the metal. You may have estimated this time scale
in a homework problem (Modern Physics problem
15-6), but that calculation depends on many crude
assumptions and rough estimates, so it’s hard to
know whether to trust it even as an order of magni-
tude estimate. Therefore if we want to try to observe
this time delay in this experiment, it’s impossible to
know in advance what to look for, and it may be ei-
ther too short (in which case we can’t measure it) or
too long (in which case it will look like the apparatus
simply isn’t working). Suppose that the time delay
is too short to detect in the conditions you initially
pick. How could you change the conditions in order
to make it longer, and possibly detectable?

P2 Suppose that the cathode is at temperature T .

Then the electrons inside the cathode already have
some amount of kinetic energy, due to their ther-
mal motion. Estimate the typical amount of kinetic
energy. In the photoelectric effect, an electron will
absorb some additional amount of energy from the
light, which is enough to pop it out of the cathode.
Until doing the experiment, we do not know how
much this additional amount is, but during the lab
you will be able to probe this question by using a
voltage V to try to stop the electrons from making
it across the gap. If this additional energy was on
the same order of magnitude as the thermal energy
(which it may not be), estimate the voltage required.

P3 In this experiment, the light comes out of the
discharge tube in a spreading cone. Geometrically,
how should the intensity I of the light depend on the
distance r? State a proportionality.

P4 Look up the wavelength of visible light and the
typical distance between atoms in a solid. How do
they compare? In the wave model, should we expect
a particular wave-train to hit one atom, or many?
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14a Setup of the Spectrometer

Apparatus
Hg gas discharge tube (PASCO OS-9286) . . . . . . . . 3
spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
diffraction grating, 600 lines/mm . . . . . . . . . 1/group
small screwdriver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
black cloth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
piece of plywood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
block of wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
penlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
light block

Goals
The lab has three parts. This one, part a, is about
setting up the optics of the spectrometer. This is
to be done once by the instructor or lab technician.
It never needs to be redone unless something gets
messed up.

Introduction

Method
The apparatus is shown in the first figure below. For
a given wavelength, the grating produces diffracted
light at many different angles: a central zeroth-order
line at θ = 0, first-order lines on both the left and
right, and so on through higher-order lines at larger
angles. The line of order m occurs at an angle sat-
isfying the equation mλ = d sin θ.

To measure a wavelength, students will move the
telescope until the diffracted first-order image of the
slit is lined up with the telescope’s cross-hairs and
then read off the angle. Note that the angular scale
on the table of the spectroscope actually gives the
angle labeled α in the figure, not θ.

Sources of systematic errors

There are three sources of systematic error:

angular scale out of alignment: If the angular
scale is out of alignment, then all the angles
will be off by a constant amount.

factory’s calibration of d: The factory that
made the grating labeled it with a certain spac-
ing (in lines per millimeter) which can be con-

verted to d (center-to-center distance between
lines). But their manufacturing process is not
all that accurate, so the actual spacing of the
lines is a little different from what the label
says.

orientation of the grating: Errors will be caused
if the grating is not perpendicular to the beam
from the collimator, or if the lines on the grat-
ing are not vertical (perpendicular to the plane
of the circle).

Eliminating systematic errors

A trick to eliminate the error due to misalignment of
the angular scale is to observe the same line on both
the right and the left, and take θ to be half the differ-
ence between the two angles, i.e., θ = (αR − αL)/2.
Because you are subtracting two angles, any source
of error that adds a constant offset onto the angles
is eliminated. A few of the spectrometers have their
angular scales out of alignment with the collimators
by as much as a full degree, but that’s of absolutely
no consequence if this technique is used.

Regarding the calibration of d, the first person who
ever did this type of experiment simply had to make
a diffraction grating whose d was very precisely con-
structed. But once someone has accurately mea-
sured at least one wavelength of one emission line
of one element, one can simply determine the spac-
ing, d, of any grating using a line whose wavelength
is known.

You might think that these two tricks would be enough
to get rid of any error due to misorientation of the
grating, but they’re not. They will get rid of any
error of the form θ → θ + c or sin θ → c sin θ, but
misorientation of the grating produces errors of the
form sin θ → sin θ + c. Part A below describes some
additional adjustments that help to get rid of addi-
tional sources of error.

Theory of Operation
The second figure below shows the optics from the
side, with the telescope simply looking down the
throat of the collimator at θ = 0. You are actu-
ally using the optics to let you see an image of the
slit, not the tube itself. The point of using a tele-
scope is that it provides angular magnification, so
that a small change in angle can be seen visually.
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A lens is used inside the collimator to make the light
from the slit into a parallel beam. This is important,
because we are using mλ = d sin θ to determine the
wavelength, but this equation was derived under the
assumption that the light was coming in as a parallel
beam. To make a parallel beam, the slit must be
located accurately at the focal point of the lens. This
adjustment should have already been done, but you
will check later and make sure. A further advantage
of using a lens in the collimator is that a telescope
only works for objects far away, not nearby objects
from which the reflected light is diverging strongly.
The lens in the collimator forms a virtual image at
infinity, on which the telescope can work.

The objective lens of the telescope focuses the light,
forming a real image inside the tube. The eyepiece
then acts like a magnifying glass to let you see the
image. In order to see the cross-hairs and the image
of the slit both in focus at the same time, the cross-
hairs must be located accurately at the focal point
of the objective, right on top of the image.

Adjustments
First you must check that the cross-hairs are at the
focal point of the objective. If they are, then the im-
age of the slits formed by the objective will be at the
same point in space as the crosshairs. You’ll be able
to focus your eye on both simultaneously, and there
will be no parallax error depending on the exact po-
sition of your eye. The easiest way to check this is
to look through the telescope at something far away
(& 50 m), and move your head left and right to see if
the crosshairs move relative to the image. Slide the
eyepiece in and out to achieve a comfortable focus.
If this adjustment is not correct, you may need to
move the crosshairs in or out; this is done by sliding
the tube that is just outside the eyepiece tube. (You
need to use the small screwdriver to loosen the screw
on the side, which is recessed inside a hole. The hole
may have a dime-sized cover over it.)

The white plastic pedestal should have already been
adjusted properly to get the diffraction grating ori-
ented correctly in three dimensions, but you should
check it carefully. There are some clever features
built into the apparatus to help in accomplishing
this. As shown in the third figure, there are three
axes about which the grating could be rotated. Ro-
tation about axis 1 is like opening a door, and this
is accomplished by rotating the entire pedestal like
a lazy Susan. Rotation about axes 2 (like folding
down a tailgate) and 3 are accomplished using the
tripod of screws underneath the pedestal. The eye-

piece of the telescope is of a type called a Gauss
eyepiece, with a diagonal piece of glass in it. When
the grating is oriented correctly about axes 1 and 2
and the telescope is at θ = 0, a beam of light that
enters through the side of the eyepiece is partially
reflected to the grating, and then reflected from the
grating back to the eye. If these two axes are cor-
rectly adjusted, the reflected image of the crosshairs
is superimposed on the crosshairs.

First get a rough initial adjustment of the pedestal
by moving the telescope to 90 degrees and sight-
ing along it like a gun to line up the grating. Now
loosen the screw (not shown in the diagram) that
frees the rotation of the pedestal. Put a desk lamp
behind the slits of the collimator, line up the tele-
scope with the m = 0 image (which may not be
exactly at α = 180 degrees), remove the desk lamp,
cover the whole apparatus with the black cloth, and
position a penlight so that it shines in through the
hole in the side of the eyepiece. Adjust axes 1 and
2. If you’re far out of adjustment, you may see part
of a circle of light, which is the reflection of the pen-
light; start by bringing the circle of light into your
field of view. When you’re done, tighten the screw
that keeps the pedestal from rotating. The pedestal
is locked down to the tripod screws by the tension
in a spring, which keeps the tips of two of the screws
secure in dimples underneath the platform. Don’t
lower the screws too much, or the pedestal will no
longer stay locked; make a habit of gently wiggling
the pedestal after each adjustment to make sure it’s
not floating loose. Two of the spectrometers have
the diagonal missing from their eyepieces, so if you
have one of those, you’ll have to borrow an eyepiece
from another group to do this adjustment.

For the adjustment of axis 3, place a piece of masking
tape so that it covers exactly half of the slits of the
collimator. Put the Hg discharge tube behind the
slits. The crosshairs should be near the edge of the
tape in them = 0 image. Move the telescope out to a
large angle where you see one of the high-m Hg lines,
and adjust the tripod screws so that the crosshairs
are at the same height relative to the edge of the
tape.

55



The spectrometer

Optics.

Orienting the grating.
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14b The Mass of the Electron

Apparatus
H gas discharge tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Hg gas discharge tube (PASCO OS-9286) . . . . . . . . 3
spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
diffraction grating, 600 lines/mm . . . . . . . . . 1/group
small screwdriver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
black cloth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
piece of plywood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
block of wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
light block

Goals
The lab is split up into parts a, b, and c. Student
lab groups will do either part b or part c. This part,
b, is a measurement of the mass of the electron.

Introduction
What’s going on inside an atom? The question would
have seemed nonsensical to physicists before the 20th
century — the word “atom” is Greek for “unsplit-
table,” and there was no evidence for subatomic
particles. Only after Thomson and Rutherford had
demonstrated the existence of electrons and the nu-
cleus did the atom begin to be imagined as a tiny
solar system, with the electrons moving in elliptical
orbits around the nucleus under the influence of its
electric field. The problem was that physicists knew
very well that accelerating charges emit electromag-
netic radiation, as for example in a radio antenna, so
the acceleration of the electrons should have caused
them to emit light, steadily lose energy, and spiral
into the nucleus, all within a microsecond,.

Luckily for us, atoms do not spontaneously shrink
down to nothing, but there was indeed evidence that
atoms could emit light. The spectra emitted by very
hot gases were observed to consist of patterns of dis-
crete lines, each with a specific wavelength. The
process of emitting light always seemed to stop short
of finally annihilating the atom — why? Also, why
were only those specific wavelengths emitted?

The first step toward understanding the structure of
the atom was Einstein’s theory that light consisted
of particles (photons), whose energy was related to
their frequency by the equation Ephoton = hf , or

substituting f = c/λ, Ephoton = hc/λ .

According to this theory, the discrete wavelengths
that had been observed came from photons with spe-
cific energies. It seemed that the atom could exist
only in specific states of specific energies. To get
from an initial state with energy Ei to a final state
with a lower energy Ef , conservation of energy re-
quired the atom to release a photon with an energy
of Ephoton = Ei − Ef .

Not only could the discrete line spectra be explained,
but if the atom possessed a state of least energy
(called a “ground state”), then it would always end
up in that state, and it could not collapse entirely.
Knowing the differences between the energy levels
of the atom, it was then possible to work backwards
and figure out the atomic energy levels themselves.

Method
The apparatus you will use to observe the spectrum
of hydrogen or nitrogen is shown in the first figure
below. For a given wavelength, the grating produces
diffracted light at many different angles: a central
zeroth-order line at θ = 0, first-order lines on both
the left and right, and so on through higher-order
lines at larger angles. The line of order m occurs at
an angle satisfying the equation mλ = d sin θ.

To measure a wavelength, you will move the tele-
scope until the diffracted first-order image of the slit
is lined up with the telescope’s cross-hairs and then
read off the angle. Note that the angular scale on
the table of the spectroscope actually gives the angle
labeled α in the figure, not θ.

Eliminating systematic errors

A trick to eliminate the error due to misalignment of
the angular scale is to observe the same line on both
the right and the left, and take θ to be half the differ-
ence between the two angles, i.e., θ = (αR − αL)/2.
Because you are subtracting two angles, any source
of error that adds a constant offset onto the angles
is eliminated. A few of the spectrometers have their
angular scales out of alignment with the collimators
by as much as a full degree, but that’s of absolutely
no consequence if this technique is used.

Regarding the calibration of d, the first person who
ever did this type of experiment simply had to make
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a diffraction grating whose d was very precisely con-
structed. But once someone has accurately mea-
sured at least one wavelength of one emission line
of one element, one can simply determine the spac-
ing, d, of any grating using a line whose wavelength
is known.

Observations
Turn on the mercury discharge tube right away, to
let it get warmed up.

The second figure below shows the optics from the
side, with the telescope simply looking down the
throat of the collimator at θ = 0. You are actu-
ally using the optics to let you see an image of the
slit, not the tube itself. The point of using a tele-
scope is that it provides angular magnification, so
that a small change in angle can be seen visually.

A lens is used inside the collimator to make the light
from the slit into a parallel beam. This is important,
because we are using mλ = d sin θ to determine the
wavelength, but this equation was derived under the
assumption that the light was coming in as a parallel
beam. To make a parallel beam, the slit must be
located accurately at the focal point of the lens. This
adjustment should have already been done, but you
will check later and make sure. A further advantage
of using a lens in the collimator is that a telescope
only works for objects far away, not nearby objects
from which the reflected light is diverging strongly.
The lens in the collimator forms a virtual image at
infinity, on which the telescope can work.

The objective lens of the telescope focuses the light,
forming a real image inside the tube. The eyepiece
then acts like a magnifying glass to let you see the
image. In order to see the cross-hairs and the image
of the slit both in focus at the same time, the cross-
hairs must be located accurately at the focal point
of the objective, right on top of the image.

Setup
Skim lab 14a so you have some idea of the way the
apparatus has been carefully aligned in advance by
the instructor or lab technician.

A Calibration

You will use the blue line from mercury as a calibra-
tion. In theory it shouldn’t matter what known line
we use for calibration, but in practice there may be
small aberrations in the spectrometer, and their ef-
fect is minimized by using calibration lines of nearly

the same wavelength as the unknown lines to be mea-
sured.

Put the mercury tube behind the collimator. Make
sure the hottest part of the tube is directly in front
of the slits. You will need to use pieces of wood to
get the height right. You want the tube as close to
the slits as possible, and lined up with the slits as
well as possible; you can adjust this while looking
through the telescope at an m = 1 line, so as to
make the line as bright as possible.

If your optics are adjusted correctly, you should be
able to see the microscopic bumps and scratches on
the knife edges of the collimator, and there should
be no parallax of the crosshairs relative to the image
of the slits.

Here is a list of the wavelengths of the most promi-
nent visible Hg lines, in nm, to high precision.1

Mercury:
404.656 violet There is a dimmer violet

line nearby at 407.781 nm.
435.833 blue
491.604 blue-green Dim. You may also see an-

other blue-green line that
is even dimmer.

546.074 green
yellow This is actually a complex

set of lines, so it’s not use-
ful for calibration.

Start by making sure that you can find all of the
lines lines in the correct sequence — if not, then you
have probably found some first-order lines and some
second-order ones. If you can find some lines but
not others, use your head and search for them in
the right area based on where you found the lines
you did see. You may see various dim, fuzzy lights
through the telescope — don’t waste time chasing
these, which could be coming from other tubes or
from reflections. The real lines will be bright, clear
and well-defined. By draping the black cloth over
the discharge tube and the collimator, you can get
rid of stray light that could cause problems for you
or others. The discharge tubes also have holes in the
back; to block the stray light from these holes, either
put the two discharge tubes back to back or use one
of the small “light blocks” that slide over the hole.

We will use the wavelength λc of the blue Hg line as a
calibration. Measure its two angles αL and αR, and

1The table gives the wavelengths in vacuum. Although
we’re doing the lab in air, our goal is to find what the hydro-
gen or nitrogen wavelengths would have been in vacuum; by
calibrating using vacuum wavelengths for mercury, we end up
getting vacuum wavelengths for our unknowns as well.
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check that the resulting value of θc is close to the
approximate ones predicted in prelab question P1.
The nominal value of the spacing of the grating given
in that prelab question is not very accurate. Having
measured θc, then we can sidestep the determination
of the grating’s spacing entirely and determine an
unknown wavelength λ by using the relation

λ =
sin θ

sin θc
λc .

The angles are measured using a vernier scale, which
is similar to the one on the vernier calipers you have
already used in the first-semester lab course. Your
final reading for an angle will consist of degrees plus
minutes. (One minute of arc, abbreviated 1’, is 1/60
of a degree.) The main scale is marked every 30
minutes. Your initial, rough reading is obtained by
noting where the zero of the vernier scale falls on the
main scale, and is of the form “xxx ◦0’ plus a little
more” or “xxx ◦30’ plus a little more.” Next, you
should note which line on the vernier scale lines up
most closely with one of the lines on the main scale.
The corresponding number on the vernier scale tells
you how many minutes of arc to add for the “plus a
little more.”

As a check on your results, everybody in your group
should take independent readings of every angle you
measure in the lab, nudging the telescope to the side
after each reading. Once you have independent re-
sults for a particular angle, compare them. If they’re
consistent to within one or two minutes of arc, aver-
age them. If they’re not consistent, figure out what
went wrong.

B Spectroscopy of Hydrogen

You will study the spectrum of light emitted by the
hydrogen atom, the simplest of all atoms, with just
one proton and one electron. In 1885, before elec-
trons and protons had even been imagined, a Swiss
schoolteacher named Johann Balmer discovered that
the wavelengths emitted by hydrogen were related by
mysterious ratios of small integers. For instance, the
wavelengths of the red line and the blue-green line
form a ratio of exactly 20/27. Balmer even found a
mathematical rule that gave all the wavelengths of
the hydrogen spectrum (both the visible ones and
the invisible ones that lay in the infrared and ultra-
violet). The formula was completely empirical, with
no theoretical basis, but clearly there were patterns
lurking in the seemingly mysterious atomic spectra.

Niels Bohr showed that the energy levels of hydrogen
obey a relatively simple equation,

En = −mk
2e4

2~2
· 1

n2

where n is an integer labeling the level, k is the
Coulomb constant, e is the fundamental unit of charge,
~ is Planck’s constant over 2π, and m is the mass of
the electron. All the energies of the photons in the
emission spectrum could now be explained as differ-
ences in energy between specific states of the atom.
For instance the four visible wavelengths observed by
Balmer all came from cases where the atom ended up
in the n = 2 state, dropping down from the n = 3,
4, 5, and 6 states.

Although the equation’s sheer size may appear for-
midable, keep in mind that the quantity mk2e4/2~2
in front is just a numerical constant, and the varia-
tion of energy from one level to the next is of the very
simple mathematical form 1/n2. It was because of
this basic simplicity that the wavelength ratios like
20/27 occurred. The minus sign occurs because the
equation includes both the electron’s potential en-
ergy and its kinetic energy, and the standard choice
of a reference-level for the potential energy results
in negative values.

Now try swapping in the hydrogen tube in place of
the mercury tube, and go through a similar process
of acquainting yourself with the four lines in its vis-
ible spectrum, which are as follows:

violet dim
purple
blue-green
red

Again you’ll again have to make sure the hottest
part of the tube is in front of the collimator; this
requires putting books and/or blocks of wood under
the discharge tube.

We will use the purple and blue-green lines to deter-
mine the mass of the electron.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

P1 The nominal (and not very accurate) spacing
of the grating is stated as 600 lines per millimeter.
From this information, find d, and predict the an-
gles αL and αR at which you will observe the blue
mercury line.

P2 Make sure you understand the first three vernier
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The spectrometer

Optics.

readings in the fourth figure, and then interpret the
fourth reading.

P3 For the calibration with mercury, in what se-
quence do you expect to see the lines on each side?
Make a drawing showing the sequence of the angles
as you go out from θ=0.

P4 The visible lines of hydrogen come from the
3 → 2, 4 → 2, 5 → 2, and 6 → 2 transitions. Based
on E = hf , which of these should correspond to
which colors?

Self-Check
In homework problem 16-9 in Modern Physics,you
calculated the ratio
λblue−green/λpurple. Before leaving lab, make sure
that your wavelengths are consistent with this pre-
diction, to a precision of no worse than about one
part per thousand.

Analysis
Throughout your analysis, remember that this is
a high-precision experiment, so you don’t want to
round off to less than five significant figures.

We assume that the following constants are already

known:

e = 1.6022× 10−19 C

k = 8.9876× 109 N·m2/C2

h = 6.6261× 10−34 J·s
c = 2.9979× 108 m/s

The energies of the four types of visible photons
emitted by a hydrogen atom equal En − E2, where
n = 3, 4, 5, and 6. Using the Bohr equation, we have

Ephoton = A

(
1

4
− 1

n2

)
,

where A is the expression from the Bohr equation
that depends on the mass of the electron. From the
two lines you’ve measured, extract a value for A.
If your data passed the self-check above, then you
should find that these values for A agree to no worse
than a few parts per thousand at worst. Compute
an average value of A, and extract the mass of the
electron, with error bars.

Finally, there is a small correction that should be
made to the result for the mass of the electron be-
cause actually the proton isn’t infinitely massive com-
pared to the electron; in terms of the quantity m
given by the equation on page 60, the mass of the
electron, me, would actually be given byme = m/(1−
m/mp), where mp is the mass of the proton, 1.6726×
10−27 kg.
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Prelab question 2.
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14c The Nitrogen Molecule

Apparatus
He gas discharge tube . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
N2 gas discharge tube (in green carousel) . . . . . . . . 3
spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
diffraction grating, 600 lines/mm . . . . . . . . . 1/group
small screwdriver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
black cloth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
piece of plywood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
block of wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
penlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
light block

Goals
The lab has three parts. Each group will only do
two parts. In this lab, part c, you will use an energy
sum to test a hypothesis about the energy levels of
the nitrogen molecule, N2.

Method
The apparatus you will use to observe the spectrum
of hydrogen or nitrogen is shown in the first figure
below. For a given wavelength, the grating produces
diffracted light at many different angles: a central
zeroth-order line at θ = 0, first-order lines on both
the left and right, and so on through higher-order
lines at larger angles. The line of order m occurs at
an angle satisfying the equation mλ = d sin θ.

To measure a wavelength, you will move the tele-
scope until the diffracted first-order image of the slit
is lined up with the telescope’s cross-hairs and then
read off the angle. Note that the angular scale on
the table of the spectroscope actually gives the angle
labeled α in the figure, not θ.

Eliminating systematic errors

A trick to eliminate the error due to misalignment of
the angular scale is to observe the same line on both
the right and the left, and take θ to be half the differ-
ence between the two angles, i.e., θ = (αR − αL)/2.
Because you are subtracting two angles, any source
of error that adds a constant offset onto the angles
is eliminated. A few of the spectrometers have their
angular scales out of alignment with the collimators
by as much as a full degree, but that’s of absolutely

no consequence if this technique is used.

Regarding the calibration of d, the first person who
ever did this type of experiment simply had to make
a diffraction grating whose d was very precisely con-
structed. But once someone has accurately mea-
sured at least one wavelength of one emission line
of one element, one can simply determine the spac-
ing, d, of any grating using a line whose wavelength
is known.

B Energy Sums

The nitrogen discharge tube is housed in a green
plastic carousel. With the power off, rotate the carousel
so that the nitrogen tube is the one that is in the ac-
tive position, and then turn on the power. If you
hold a diffraction grating up to your eye and look
at the tube, you will see a remarkable spectrum, un-
like the visible light spectrum of almost any other
gas. This is because the N2 molecule has an ex-
tremely strong bond, requiring twice the energy to
break compared to otherwise similar gases such as
H2 or O2. Whereas these other gases would break up
into individual atoms under the extreme conditions
present in a discharge tube, the nitrogen molecule
holds together, so that you are seeing the spectrum
of the molecule, not the atom. For this reason,
the spectrum of nitrogen contains a large number
of lines.

But these lines are not random. They occur in sets,
each of which looks like a comb with an approxi-
mately equal spacing between the “teeth.” The fig-
ure shows a portion of the spectrum, including three
sets of lines, which I have labeled r (red), o (orange
to green), and g (green).

I have spent some time trying to interpret the ori-
gin of these lines, and I believe the interpretation is
something like this. Each of these lines is the emis-
sion of a photon as the molecule goes from an initial
state to a final state that has less energy. The ini-
tial state has some energy because the electrons are
in an excited state (labeled B by spectroscopists)

64 Lab 14c The Nitrogen Molecule



and also some energy because the molecule is vi-
brating, like two masses connected by a spring. The
final state has the electrons in a lower-energy state
(labeled A), and is also vibrating. The initial and
final electronic states B and A are the same in all
cases, but the vibrational states differ. An idealized
quantum-mechanical vibrator turns out to have a se-
ries of energy states like a ladder with nearly evenly
spaced rungs. States higher on the “ladder” are vi-
brating more violently — classically, they vibrate
with greater amplitude. The rungs of the vibrational
ladder are labeled v = 0, 1, 2, and so on. (Because
of the Heisenberg uncertainty principle, some vibra-
tional energy is present even in the v = 0 state.) I
think the states in the red set are from a state v to a
state v−3, i.e., a change of 3 units in the vibrational
quantum number. The o set would be a change of
4, and g a change of 5.

This hypothesis can be tested as follows. If it is
true, we could pick out a set of energy levels like the
following example:

The letters e, f , g, and h are the energy differences
that would be observed as the energies of the pho-
tons. In a set like this, we would have

h− g = f − e,

since each side of the equation would be equal to
the energy difference between the v = 4 and 5 states
of ladder A. Try to find a set of lines that would be
consistent with this interpretation. This may require
some trial and error, but I think it may work if e is
one of the lines near the middle of the r set, g is the
orange line that is fourth from the short-wavelength
end of the o set, f is the fifth in that set, and h is in
the g set.

C Calibration

You will use the yellow line from helium as a calibra-
tion. In theory it shouldn’t matter what known line
we use for calibration, but in practice there may be
small aberrations in the spectrometer, and their ef-
fect is minimized by using calibration lines of nearly
the same wavelength as the unknown lines to be mea-
sured.

Put the helium tube behind the collimator. Make
sure the hottest part of the tube is directly in front
of the slits. You will need to use pieces of wood to
get the height right. You want the tube as close to
the slits as possible, and lined up with the slits as
well as possible; you can adjust this while looking
through the telescope at an m = 1 line, so as to
make the line as bright as possible.

If your optics are adjusted correctly, you should be
able to see the microscopic bumps and scratches on
the knife edges of the collimator, and there should
be no parallax of the crosshairs relative to the image
of the slits.

Here is a list of the wavelengths of the most promi-
nent visible He lines, in nm, to high precision.1

Helium:
447.148 bright blue-purple
471.314 dim blue
492.193 dim green
501.567 bright green
587.562 yellow
667.815 dim red
706.5 very dim red

Start by making sure that you can find all of the lines
in the correct sequence — if not, then you have prob-
ably found some first-order lines and some second-
order ones. If you can find some lines but not others,
use your head and search for them in the right area
based on where you found the lines you did see. You
may see various dim, fuzzy lights through the tele-
scope — don’t waste time chasing these, which could
be coming from other tubes or from reflections. The
real lines will be bright, clear and well-defined. By
draping the black cloth over the discharge tube and
the collimator, you can get rid of stray light that
could cause problems for you or others. The dis-
charge tubes also have holes in the back; to block
the stray light from these holes, either put the two
discharge tubes back to back or use one of the small

1The table gives the wavelengths in vacuum. Although
we’re doing the lab in air, our goal is to find what the nitrogen
wavelengths would have been in vacuum; by calibrating using
vacuum wavelengths for mercury, we end up getting vacuum
wavelengths for our unknowns as well.
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“light blocks” that slide over the hole.

We will use the wavelength λc of the hellow He line
as a calibration. Measure its two angles αL and αR,
and check that the resulting value of θc is close to the
approximate ones predicted in prelab question P1.
The nominal value of the spacing of the grating given
in that prelab question is not very accurate. Having
measured θc, then we can sidestep the determination
of the grating’s spacing entirely and determine an
unknown wavelength λ by using the relation

λ =
sin θ

sin θc
λc .

The angles are measured using a vernier scale, which
is similar to the one on the vernier calipers you have
already used in the first-semester lab course. Your
final reading for an angle will consist of degrees plus
minutes. (One minute of arc, abbreviated 1’, is 1/60
of a degree.) The main scale is marked every 30
minutes. Your initial, rough reading is obtained by
noting where the zero of the vernier scale falls on the
main scale, and is of the form “xxx ◦0’ plus a little
more” or “xxx ◦30’ plus a little more.” Next, you
should note which line on the vernier scale lines up
most closely with one of the lines on the main scale.
The corresponding number on the vernier scale tells
you how many minutes of arc to add for the “plus a
little more.”

As a check on your results, everybody in your group
should take independent readings of every angle you
measure in the lab, nudging the telescope to the side
after each reading. Once you have independent re-
sults for a particular angle, compare them. If they’re
consistent to within one or two minutes of arc, aver-
age them. If they’re not consistent, figure out what
went wrong.

Status as of August 2018
In spring of 2018, my students and I worked on mea-
suring and interpreting this spectrum. A summary
of our results is in a Google Docs spreadsheet at
goo.gl/akrbcY. There is a basic explanation of the
physics in Simple Nature section 14.2. More detailed
information about my interpretation of the lines is
at
physics.stackexchange.com/a/334451/4552.

In the notation used in the material on stackex-
change, the states are labeled with a quantum num-
ber v. The energy sum based on our data come out
quite nice for v = 9 and 8 going to 5 and 4, ac-
curate to about 0.3%, which is reasonable for this

technique. The energy sum for v = 10 and 9 going
to 6 and 5 also works well, but with slightly higher
error, maybe partly because 10-5 is a doublet. There
are two dim green lines that in my labeling system
would be g0 and g-1. These may be the ones we
would need in order to get a couple more energy
sums.

I experimented with doing the measurements pho-
tographically. A student took a photo of a diffrac-
tion pattern using a cell phone. I first did a rough
calibration against student data, then improved this
calibration by doing a linear fit to my own spectrom-
eter data. This worked fairly well, but doesn’t work
without actual spectrometer data, which are needed
for calibration.

We have digital spectrometers which may be helpful
here and are worth trying. Their resolution is sup-
posed to be about 1 or 1.5 nm, which is an order
of magnitude worse than the analog spectrometers,
but may be adequate for this purpose, and they can
display a spectrum as a graph, which may be help
enough to make up for the lower resolution.

I couldn’t resolve the green band. I asked a couple
of students the next day, and they seemed to think
that it was doable to resolve these lines. Possibly my
tube was behaving differently than theirs, but I’m
not sure I believe their data. The red and orange
bands came out nice, all wavelengths being within a
few tenths of a nm of Lofthus’s values.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

The week before you are to do the lab, briefly famil-
iarize yourself visually with the apparatus.

P1 The nominal (and not very accurate) spacing
of the grating is stated as 600 lines per millimeter.
From this information, find d, and predict the an-
gles αL and αR at which you will observe the yellow
helium line.

P2 Make sure you understand the first three vernier
readings in the fourth figure, and then interpret the
fourth reading.

P3 For the calibration with helium, in what se-
quence do you expect to see the lines on each side?
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Make a drawing showing the sequence of the angles
as you go out from θ=0.
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Orienting the grating.

Prelab question 2.
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Appendix 1: Format of Lab Writeups

Lab reports must be three pages or less, not counting
your raw data. The format should be as follows:

Title

Raw data — Keep actual observations separate from
what you later did with them.
These are the results of the measurements you take
down during the lab, hence they come first. Write
your raw data directly in your lab book; don’t write
them on scratch paper and recopy them later. Don’t
use pencil. The point is to separate facts from opin-
ions, observations from inferences.

Procedure — Did you have to create your own
methods for getting some of the raw data?
Do not copy down the procedure from the manual.
In this section, you only need to explain any meth-
ods you had to come up with on your own, or cases
where the methods suggested in the handout didn’t
work and you had to do something different. Don’t
write anything here unless you think I will really care
and want to change how we do the lab in the future.
In most cases this section can be totally blank. Do
not discuss how you did your calculations here, just
how you got your raw data.

Abstract — What did you find out? Why is it im-
portant?
The “abstract” of a scientific paper is a short para-
graph at the top that summarizes the experiment’s
results in a few sentences.

Many of our labs are comparisons of theory and ex-
periment. The abstract for such a lab needs to say
whether you think the experiment was consistent
with theory, or not consistent with theory. If your
results deviated from the ideal equations, don’t be
afraid to say so. After all, this is real life, and many
of the equations we learn are only approximations,
or are only valid in certain circumstances. However,
(1) if you simply mess up, it is your responsibility
to realize it in lab and do it again, right; (2) you
will never get exact agreement with theory, because
measurements are not perfectly exact — the impor-
tant issue is whether your results agree with theory
to roughly within the error bars.

The abstract is not a statement of what you hoped
to find out. It’s a statement of what you did find
out. It’s like the brief statement at the beginning
of a debate: “The U.S. should have free trade with
China.” It’s not this: “In this debate, we will discuss

whether the U.S. should have free trade with China.”

If this is a lab that has just one important numerical
result (or maybe two or three of them), put them
in your abstract, with error bars where appropriate.
There should normally be no more than two to four
numbers here. Do not recapitulate your raw data
here — this is for your final results.

If you’re presenting a final result with error bars,
make sure that the number of significant figures is
consistent with your error bars. For example, if you
write a result as 323.54± 6 m/s, that’s wrong. Your
error bars say that you could be off by 6 in the ones’
place, so the 5 in the tenths’ place and the four in
the hundredths’ place are completely meaningless.

If you’re presenting a number in scientific notation,
with error bars, don’t do it like this

1.234× 10−89 m/s± 3× 10−92 m/s ,

do it like this

(1.234± 0.003)× 10−89 m/s ,

so that we can see easily which digit of the result the
error bars apply to.

Calculations and Reasoning — Convince me of
what you claimed in your abstract.
Often this section consists of nothing more than the
calculations that you started during lab. If those cal-
culations are clear enough to understand, and there
is nothing else of interest to explain, then it is not
necessary to write up a separate narrative of your
analysis here. If you have a long series of similar
calculations, you may just show one as a sample. If
your prelab involved deriving equations that you will
need, repeat them here without the derivation.

In some labs, you will need to go into some detail
here by giving logical arguments to convince me that
the statements you made in the abstract follow log-
ically from your data. Continuing the debate meta-
phor, if your abstract said the U.S. should have free
trade with China, this is the rest of the debate, where
you convince me, based on data and logic, that we
should have free trade.
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Appendix 2: Basic Error Analysis

No measurement is perfectly ex-
act.
One of the most common misconceptions about sci-
ence is that science is “exact.” It is always a strug-
gle to get beginning science students to believe that
no measurement is perfectly correct. They tend to
think that if a measurement is a little off from the
“true” result, it must be because of a mistake — if
a pro had done it, it would have been right on the
mark. Not true!

What scientists can do is to estimate just how far
off they might be. This type of estimate is called
an error bar, and is expressed with the ± symbol,
read “plus or minus.” For instance, if I measure my
dog’s weight to be 52 ± 2 pounds, I am saying that
my best estimate of the weight is 52 pounds, and I
think I could be off by roughly 2 pounds either way.
The term “error bar” comes from the conventional
way of representing this range of uncertainty of a
measurement on a graph, but the term is also used
when no graph is involved.

Some very good scientific work results in measure-
ments that nevertheless have large error bars. For
instance, the best measurement of the age of the uni-
verse is now 15±5 billion years. That may not seem
like wonderful precision, but the people who did the
measurement knew what they were doing. It’s just
that the only available techniques for determining
the age of the universe are inherently poor.

Even when the techniques for measurement are very
precise, there are still error bars. For instance, elec-
trons act like little magnets, and the strength of a
very weak magnet such as an individual electron is
customarily measured in units called Bohr magne-
tons. Even though the magnetic strength of an elec-
tron is one of the most precisely measured quantities
ever, the best experimental value still has error bars:
1.0011596524± 0.0000000002 Bohr magnetons.

There are several reasons why it is important in sci-
entific work to come up with a numerical estimate
of your error bars. If the point of your experiment
is to test whether the result comes out as predicted
by a theory, you know there will always be some
disagreement, even if the theory is absolutely right.
You need to know whether the measurement is rea-
sonably consistent with the theory, or whether the
discrepancy is too great to be explained by the lim-

itations of the measuring devices.

Another important reason for stating results with er-
ror bars is that other people may use your measure-
ment for purposes you could not have anticipated.
If they are to use your result intelligently, they need
to have some idea of how accurate it was.

Error bars are not absolute limits.
Error bars are not absolute limits. The true value
may lie outside the error bars. If I got a better scale I
might find that the dog’s weight is 51.3±0.1 pounds,
inside my original error bars, but it’s also possible
that the better result would be 48.7 ± 0.1 pounds.
Since there’s always some chance of being off by a
somewhat more than your error bars, or even a lot
more than your error bars, there is no point in be-
ing extremely conservative in an effort to make ab-
solutely sure the true value lies within your stated
range. When a scientist states a measurement with
error bars, she is not saying “If the true value is
outside this range, I deserve to be drummed out of
the profession.” If that was the case, then every sci-
entist would give ridiculously inflated error bars to
avoid having her career ended by one fluke out of
hundreds of published results. What scientists are
communicating to each other with error bars is a
typical amount by which they might be off, not an
upper limit.

The important thing is therefore to define error bars
in a standard way, so that different people’s state-
ments can be compared on the same footing. By
convention, it is usually assumed that people esti-
mate their error bars so that about two times out of
three, their range will include the true value (or the
results of a later, more accurate measurement with
an improved technique).

Random and systematic errors.
Suppose you measure the length of a sofa with a
tape measure as well as you can, reading it off to
the nearest millimeter. If you repeat the measure-
ment again, you will get a different answer. (This
is assuming that you don’t allow yourself to be psy-
chologically biased to repeat your previous answer,
and that 1 mm is about the limit of how well you
can see.) If you kept on repeating the measurement,
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you might get a list of values that looked like this:

203.1 cm 203.4 202.8 203.3 203.2
203.4 203.1 202.9 202.9 203.1

Variations of this type are called random errors, be-
cause the result is different every time you do the
measurement.

The effects of random errors can be minimized by av-
eraging together many measurements. Some of the
measurements included in the average are too high,
and some are too low, so the average tends to be
better than any individual measurement. The more
measurements you average in, the more precise the
average is. The average of the above measurements
is 203.1 cm. Averaging together many measurements
cannot completely eliminate the random errors, but
it can reduce them.

On the other hand, what if the tape measure was a
little bit stretched out, so that your measurements
always tended to come out too low by 0.3 cm? That
would be an example of a systematic error. Since
the systematic error is the same every time, aver-
aging didn’t help us to get rid of it. You probably
had no easy way of finding out exactly the amount
of stretching, so you just had to suspect that there
might a systematic error due to stretching of the
tape measure.

Some scientific writers make a distinction between
the terms “accuracy” and “precision.” A precise
measurement is one with small random errors, while
an accurate measurement is one that is actually close
to the true result, having both small random errors
and small systematic errors. Personally, I find the
distinction is made more clearly with the more mem-
orable terms “random error” and “systematic error.”

The ± sign used with error bars normally implies
that random errors are being referred to, since ran-
dom errors could be either positive or negative, whereas
systematic errors would always be in the same direc-
tion.

The goal of error analysis
Very seldom does the final result of an experiment
come directly off of a clock, ruler, gauge or meter.
It is much more common to have raw data consist-
ing of direct measurements, and then calculations
based on the raw data that lead to a final result.
As an example, if you want to measure your car’s
gas mileage, your raw data would be the number of
gallons of gas consumed and the number of miles
you went. You would then do a calculation, dividing

miles by gallons, to get your final result. When you
communicate your result to someone else, they are
completely uninterested in how accurately you mea-
sured the number of miles and how accurately you
measured the gallons. They simply want to know
how accurate your final result was. Was it 22 ± 2
mi/gal, or 22.137± 0.002 mi/gal?

Of course the accuracy of the final result is ulti-
mately based on and limited by the accuracy of your
raw data. If you are off by 0.2 gallons in your mea-
surement of the amount of gasoline, then that amount
of error will have an effect on your final result. We
say that the errors in the raw data “propagate” through
the calculations. When you are requested to do “er-
ror analysis” in a lab writeup, that means that you
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are to use the techniques explained below to deter-
mine the error bars on your final result. There are
two sets of techniques you’ll need to learn:

techniques for finding the accuracy of your raw
data

techniques for using the error bars on your raw
data to infer error bars on your final result

Estimating random errors in raw
data
We now examine three possible techniques for es-
timating random errors in your original measure-
ments, illustrating them with the measurement of
the length of the sofa.

Method #1: Guess

If you’re measuring the length of the sofa with a
metric tape measure, then you can probably make a
reasonable guess as to the precision of your measure-
ments. Since the smallest division on the tape mea-
sure is one millimeter, and one millimeter is also near
the limit of your ability to see, you know you won’t
be doing better than ± 1 mm, or 0.1 cm. Making al-
lowances for errors in getting tape measure straight
and so on, we might estimate our random errors to
be a couple of millimeters.

Guessing is fine sometimes, but there are at least two
ways that it can get you in trouble. One is that stu-
dents sometimes have too much faith in a measuring
device just because it looks fancy. They think that
a digital balance must be perfectly accurate, since
unlike a low-tech balance with sliding weights on it,
it comes up with its result without any involvement
by the user. That is incorrect. No measurement is
perfectly accurate, and if the digital balance only
displays an answer that goes down to tenths of a
gram, then there is no way the random errors are
any smaller than about a tenth of a gram.

Another way to mess up is to try to guess the error
bars on a piece of raw data when you really don’t
have enough information to make an intelligent esti-
mate. For instance, if you are measuring the range
of a rifle, you might shoot it and measure how far
the bullet went to the nearest centimeter, conclud-
ing that your random errors were only ±1 cm. In
reality, however, its range might vary randomly by
fifty meters, depending on all kinds of random fac-
tors you don’t know about. In this type of situation,
you’re better off using some other method of esti-
mating your random errors.

Method #2: Repeated Measurements and the Two-
Thirds Rule

If you take repeated measurements of the same thing,
then the amount of variation among the numbers can
tell you how big the random errors were. This ap-
proach has an advantage over guessing your random
errors, since it automatically takes into account all
the sources of random error, even ones you didn’t
know were present.

Roughly speaking, the measurements of the length
of the sofa were mostly within a few mm of the av-
erage, so that’s about how big the random errors
were. But let’s make sure we are stating our error
bars according to the convention that the true result
will fall within our range of errors about two times
out of three. Of course we don’t know the “true”
result, but if we sort out our list of measurements
in order, we can get a pretty reasonable estimate of
our error bars by taking half the range covered by
the middle two thirds of the list. Sorting out our list
of ten measurements of the sofa, we have

202.8 cm 202.9 202.9 203.1 203.1
203.1 203.2 203.3 203.4 203.4

Two thirds of ten is about 6, and the range covered
by the middle six measurements is 203.3 cm - 202.9
cm, or 0.4 cm. Half that is 0.2 cm, so we’d esti-
mate our error bars as ±0.2 cm. The average of the
measurements is 203.1 cm, so your result would be
stated as 203.1± 0.2 cm.

One common mistake when estimating random er-
rors by repeated measurements is to round off all
your measurements so that they all come out the
same, and then conclude that the error bars were
zero. For instance, if we’d done some overenthu-
siastic rounding of our measurements on the sofa,
rounding them all off to the nearest cm, every single
number on the list would have been 203 cm. That
wouldn’t mean that our random errors were zero!
The same can happen with digital instruments that
automatically round off for you. A digital balance
might give results rounded off to the nearest tenth of
a gram, and you may find that by putting the same
object on the balance again and again, you always
get the same answer. That doesn’t mean it’s per-
fectly precise. Its precision is no better than about
±0.1 g.

Method #3: Repeated Measurements and the Stan-
dard Deviation

The most widely accepted method for measuring er-
ror bars is called the standard deviation. Here’s how
the method works, using the sofa example again.
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(1) Take the average of the measurements.

average = 203.1 cm

(2) Find the difference, or “deviation,” of each mea-
surement from the average.

−0.3 cm −0.2 −0.2 0.0 0.0
0.0 0.1 0.1 0.3 0.3

(3) Take the square of each deviation.

0.09 cm2 0.04 0.04 0.00 0.00
0.00 0.01 0.01 0.09 0.09

(4) Average together all the squared deviations.

average = 0.04 cm2

(5) Take the square root. This is the standard devi-
ation.

standard deviation = 0.2 cm

If we’re using the symbol x for the length of the
couch, then the result for the length of the couch
would be stated as x = 203.1± 0.2 cm, or x = 203.1
cm and σx = 0.2 cm. Since the Greek letter sigma
(σ) is used as a symbol for the standard deviation, a
standard deviation is often referred to as “a sigma.”

Step (3) may seem somewhat mysterious. Why not
just skip it? Well, if you just went straight from
step (2) to step (4), taking a plain old average of
the deviations, you would find that the average is
zero! The positive and negative deviations always
cancel out exactly. Of course, you could just take
absolute values instead of squaring the deviations.
The main advantage of doing it the way I’ve outlined
above are that it is a standard method, so people will
know how you got the answer. (Another advantage
is that the standard deviation as I’ve described it
has certain nice mathematical properties.)

A common mistake when using the standard devi-
ation technique is to take too few measurements.
For instance, someone might take only two measure-
ments of the length of the sofa, and get 203.4 cm
and 203.4 cm. They would then infer a standard de-
viation of zero, which would be unrealistically small
because the two measurements happened to come
out the same.

In the following material, I’ll use the term “stan-
dard deviation” as a synonym for “error bar,” but
that does not imply that you must always use the
standard deviation method rather than the guessing
method or the 2/3 rule.

There is a utility on the class’s web page for calcu-
lating standard deviations.

Probability of deviations
You can see that although 0.2 cm is a good figure
for the typical size of the deviations of the mea-
surements of the length of the sofa from the aver-
age, some of the deviations are bigger and some are
smaller. Experience has shown that the following
probability estimates tend to hold true for how fre-
quently deviations of various sizes occur:

> 1 standard deviation about 1 times out of 3

> 2 standard deviations about 1 time out of
20

> 3 standard deviations about 1 in 500

> 4 standard deviations about 1 in 16,000

> 5 standard deviations about 1 in 1,700,000

The probability of various sizes of deviations, shown
graphically. Areas under the bell curve correspond to
probabilities. For example, the probability that the mea-
surement will deviate from the truth by less than one stan-
dard deviation (±1σ) is about 34 × 2 = 68%, or about 2
out of 3. (J. Kemp, P. Strandmark, Wikipedia.)

Example: How significant?
In 1999, astronomers Webb et al. claimed to have found
evidence that the strength of electrical forces in the an-
cient universe, soon after the big bang, was slightly
weaker than it is today. If correct, this would be the first
example ever discovered in which the laws of physics
changed over time. The difference was very small, 5.7±
1.0 parts per million, but still highly statistically signifi-
cant. Dividing, we get (5.7− 0)/1.0 = 5.7 for the num-
ber of standard deviations by which their measurement
was different from the expected result of zero. Looking
at the table above, we see that if the true value really
was zero, the chances of this happening would be less
than one in a million. In general, five standard devia-
tions (“five sigma”) is considered the gold standard for
statistical significance.

This is an example of how we test a hypothesis sta-
tistically, find a probability, and interpret the probability.
The probability we find is the probability that our results
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would differ this much from the hypothesis, if the hy-
pothesis was true. It’s not the probability that the hy-
pothesis is true or false, nor is it the probability that our
experiment is right or wrong.

However, there is a twist to this story that shows how
statistics always have to be taken with a grain of salt. In
2004, Chand et al. redid the measurement by a more
precise technique, and found that the change was 0.6±
0.6 parts per million. This is only one standard devia-
tion away from the expected value of 0, which should be
interpreted as being statistically consistent with zero. If
you measure something, and you think you know what
the result is supposed to be theoretically, then one stan-
dard deviation is the amount you typically expect to be
off by — that’s why it’s called the “standard” deviation.
Moreover, the Chand result is wildly statistically incon-
sistent with the Webb result (see the example on page
79), which means that one experiment or the other is
a mistake. Most likely Webb at al. underestimated their
random errors, or perhaps there were systematic errors
in their experiment that they didn’t realize were there.

Precision of an average
We decided that the standard deviation of our mea-
surements of the length of the couch was 0.2 cm,
i.e., the precision of each individual measurement
was about 0.2 cm. But I told you that the average,
203.1 cm, was more precise than any individual mea-
surement. How precise is the average? The answer
is that the standard deviation of the average equals

standard deviation of one measurement√
number of measurements

.

(An example on page 78 gives the reasoning that
leads to the square root.) That means that you can
theoretically measure anything to any desired preci-
sion, simply by averaging together enough measure-
ments. In reality, no matter how small you make
your random error, you can’t get rid of systematic er-
rors by averaging, so after a while it becomes point-
less to take any more measurements.
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Appendix 3: Propagation of Errors

Propagation of the error from a
single variable
In the previous appendix we looked at techniques
for estimating the random errors of raw data, but
now we need to know how to evaluate the effects of
those random errors on a final result calculated from
the raw data. For instance, suppose you are given a
cube made of some unknown material, and you are
asked to determine its density. Density is defined
as ρ = m/v (ρ is the Greek letter “rho”), and the
volume of a cube with edges of length b is v = b3, so
the formula

ρ = m/b3

will give you the density if you measure the cube’s
mass and the length of its sides. Suppose you mea-
sure the mass very accurately as m = 1.658±0.003 g,
but you know b = 0.85±0.06 cm with only two digits
of precision. Your best value for ρ is 1.658 g/(0.85 cm)3 =
2.7 g/cm3.

How can you figure out how precise this value for ρ
is? We’ve already made sure not to keep more than
twosignificant figures for ρ, since the less accurate
piece of raw data had only two significant figures.
We expect the last significant figure to be somewhat
uncertain, but we don’t yet know how uncertain. A
simple method for this type of situation is simply to
change the raw data by one sigma, recalculate the
result, and see how much of a change occurred. In
this example, we add 0.06 cm to b for comparison.

b = 0.85 cm gave ρ = 2.7 g/cm3

b = 0.91 cm gives ρ = 2.2 g/cm3

The resulting change in the density was 0.5 g/cm3,
so that is our estimate for how much it could have
been off by:

ρ = 2.7± 0.5 g/cm3 .

Propagation of the error from sev-
eral variables
What about the more general case in which no one
piece of raw data is clearly the main source of error?
For instance, suppose we get a more accurate mea-
surement of the edge of the cube, b = 0.851± 0.001
cm. In percentage terms, the accuracies of m and

b are roughly comparable, so both can cause sig-
nificant errors in the density. The following more
general method can be applied in such cases:

(1) Change one of the raw measurements, say m, by
one standard deviation, and see by how much the
final result, ρ, changes. Use the symbol Qm for the
absolute value of that change.

m = 1.658 g gave ρ = 2.690 g/cm3

m = 1.661 g gives ρ = 2.695 g/cm3

Qm = change in ρ = 0.005 g/cm3

(2) Repeat step (1) for the other raw measurements.

b = 0.851 cm gave ρ = 2.690 g/cm3

b = 0.852 cm gives ρ = 2.681 g/cm3

Qb = change in ρ = 0.009 g/cm3

(3) The error bars on ρ are given by the formula

σρ =
√
Q2
m +Q2

b ,

yielding σρ = 0.01 g/cm3. Intuitively, the idea here
is that if our result could be off by an amount Qm
because of an error in m, and by Qb because of b,
then if the two errors were in the same direction, we
might by off by roughly |Qm| + |Qb|. However, it’s
equally likely that the two errors would be in oppo-
site directions, and at least partially cancel. The ex-
pression

√
Q2
m +Q2

b gives an answer that’s smaller
than Qm+Qb, representing the fact that the cancel-
lation might happen.

The final result is ρ = 2.69± 0.01 g/cm3.

Example: An average
On page 76 I claimed that averaging a bunch of mea-
surements reduces the error bars by the square root of
the number of measurements. We can now see that
this is a special case of propagation of errors.

For example, suppose Alice measures the circumfer-
ence c of a guinea pig’s waist to be 10 cm, Using the
guess method, she estimates that her error bars are
about ±1 cm (worse than the normal normal ∼ 1 mm
error bars for a tape measure, because the guinea pig
was squirming). Bob then measures the same thing,
and gets 12 cm. The average is computed as

c =
A + B

2
,

where A is Alice’s measurement, and B is Bob’s, giving
11 cm. If Alice had been off by one standard devia-
tion (1 cm), it would have changed the average by 0.5
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cm, so we have QA = 0.5 cm, and likewise QB = 0.5
cm. Combining these, we find σc =

√
Q2

A + Q2
B = 0.7

cm, which is simply (1.0 cm)/
√
2. The final result is

c = (11.0 ± 0.7) cm. (This violates the usual rule for
significant figures, which is that the final result should
have no more sig figs than the least precise piece of
data that went into the calculation. That’s okay, be-
cause the sig fig rules are just a quick and dirty way
of doing propagation of errors. We’ve done real propa-
gation of errors in this example, and it turns out that the
error is in the first decimal place, so the 0 in that place
is entitled to hold its head high as a real sig fig, albeit a
relatively imprecise one with an uncertainty of ±7.)

Example: The difference between two measurements
In the example on page 75, we saw that two groups
of scientists measured the same thing, and the results
were W = 5.7± 1.0 for Webb et al. and C = 0.6± 0.6
for Chand et al. It’s of interest to know whether the
difference between their two results is small enough to
be explained by random errors, or so big that it couldn’t
possibly have happened by chance, indicating that some-
one messed up. The figure shows each group’s results,
with error bars, on the number line. We see that the two
sets of error bars don’t overlap with one another, but er-
ror bars are not absolute limits, so it’s perfectly possible
to have non-overlapping error bars by chance, but the
gap between the error bars is very large compared to
the error bars themselves, so it looks implausible that
the results could be statistically consistent with one an-
other. I’ve tried to suggest this visually with the shading
underneath the data-points.

To get a sharper statistical test, we can calculate the
difference d between the two results,

d = W − C ,

which is 5.1. Since the operation is simply the subtrac-
tion of the two numbers, an error in either input just
causes an error in the output that is of the same size.
Therefore we have QW = 1.0 and QC = 0.6, resulting
in σd =

√
Q2

W + Q2
C = 1.2. We find that the difference

between the two results is d = 5.1± 1.2, which differs
from zero by 5.1/1.2 ≈ 4 standard deviations. Looking
at the table on page 75, we see that the chances that
d would be this big by chance are extremely small, less
than about one in ten thousand. We can conclude to a
high level of statistical confidence that the two groups’
measurements are inconsistent with one another, and
that one group is simply wrong.
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Appendix 4: Graphing

Review of Graphing
Many of your analyses will involve making graphs.
A graph can be an efficient way of presenting data
visually, assuming you include all the information
needed by the reader to interpret it. That means
labeling the axes and indicating the units in paren-
theses, as in the example. A title is also helpful.
Make sure that distances along the axes correctly
represent the differences in the quantity being plot-
ted. In the example, it would not have been correct
to space the points evenly in the horizontal direction,
because they were not actually measured at equally
spaced points in time.

Graphing on a Computer
Making graphs by hand in your lab notebook is fine,
but in some cases you may find it saves you time to
do graphs on a computer. For computer graphing,
I recommend LibreOffice, which is free, open-source
software. It’s installed on the computers in rooms
416 and 418. Because LibreOffice is free, you can
download it and put it on your own computer at
home without paying money. If you already know
Excel, it’s very similar — you almost can’t tell it’s
a different program.

Here’s a brief rundown on using LibreOffice:

On Windows, go to the Start menu and choose
All Programs, LibreOffice, and LibreOffice Calc.
On Linux, do Applications, Office, OpenOffice,
Spreadsheet.

Type in your x values in the first column, and
your y values in the second column. For sci-
entific notation, do, e.g., 5.2e-7 to represent
5.2× 10−7.

Select those two columns using the mouse.

From the Insert menu, do Object:Chart.

When it offers you various styles of graphs to
choose from, choose the icon that shows a scat-
ter plot, with dots on it (XY Chart).

Adjust the scales so the actual data on the
plot is as big as possible, eliminating wasted
space. To do this, double-click on the graph so
that it’s surrounded by a gray border. Then
do Format, Axis, X Axis or Y Axis, Scale.

If you want error bars on your graph you can either
draw them in by hand or put them in a separate col-
umn of your spreadsheet and doing Insert, Y Error
Bars, Cell Range. Under Parameters, check “Same
value for both.” Click on the icon, and then use the
mouse in the spreadsheet to select the cells contain-
ing the error bars.

Fitting a Straight Line to a Graph
by Hand
Often in this course you will end up graphing some
data points, fitting a straight line through them with
a ruler, and extracting the slope.
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In this example, panel (a) shows the data, with error
bars on each data point. Panel (b) shows a best
fit, drawn by eye with a ruler. The slope of this
best fit line is 100 cm/s. Note that the slope should
be extracted from the line itself, not from two data
points. The line is more reliable than any pair of
individual data points.

In panel (c), a “worst believable fit” line has been
drawn, which is as different in slope as possible from
the best fit, while still pretty much staying consis-
tent the data (going through or close to most of the
error bars). Its slope is 60 cm/s. We can therefore
estimate that the precision of our slope is +40 cm/s.

There is a tendency when drawing a “worst believ-
able fit” line to draw instead an “unbelievably crazy
fit” line, as in panel (d). The line in panel (d), with
a very small slope, is just not believable compared
to the data — it is several standard deviations away
from most of the data points.

Fitting a Straight Line to a Graph
on a Computer
It’s also possible to fit a straight line to a graph using
computer software such as LibreOffice.

To do this, first double-click on the graph so that a
gray border shows up around it. Then right-click on
a data-point, and a menu pops up. Choose Insert
Trend Line.1 choose Linear, and check the box for
Show equation.

How accurate is your slope? A method for getting
error bars on the slope is to artificially change one
of your data points to reflect your estimate of how
much it could have been off, and then redo the fit
and find the new slope. The change in the slope tells
you the error in the slope that results from the error
in this data-point. You can then repeat this for the
other points and proceed as in appendix 3.

An alternative method is to use the LINEST func-
tion that is available in many spreadsheet programs.
For a description, see tinyurl.com/ya7wmdft. Cre-
ate the following formula in one cell of your spread-
sheet: =Linest(y-values,x-value, True.True). Then,
in excel, you need to press alt+ctrl+enter. In google
sheets, press enter. A table with two columns and
five rows will appear. The first number in the first
column is the slope of the graph, and the second

1“Trend line” is scientifically illiterate terminology that
originates from Microsoft Office, which LibreOffice slavishly
copies. If you don’t want to come off as an ignoramus, call it
a “fit” or “line of best fit.”

number in the first column is the error in the slope.

In some cases, such as the absolute zero lab and the
photoelectric effect lab, it’s very hard to tell how
accurate your raw data are a priori ; in these labs,
you can use the typical amount of deviation of the
points from the line as an estimate of their accuracy.

Comparing Theory and Experiment
Figures (e) through (h) are examples of how we would
compare theory and experiment on a graph. The
convention is that theory is a line and experiment is
points; this is because the theory is usually a predic-
tion in the form of an equation, which can in prin-
ciple be evaluated at infinitely many points, filling
in all the gaps. One way to accomplish this with
computer software is to graph both theory and ex-
periment as points, but then print out the graph and
draw a smooth curve through the theoretical points
by hand.

The point here is usually to compare theory and
experiment, and arrive at a yes/no answer as to
whether they agree. In (e), the theoretical curve
goes through the error bars on four out of six of
the data points. This is about what we expect sta-
tistically, since the probability of being within one
standard deviation of the truth is about 2/3 for a
standard bell curve. Given these data, we would
conclude that theory and experiment agreed.

In graph (f), the points are exactly the same as in
(e), but the conclusion is the opposite. The error
bars are smaller, too small to explain the observed
discrepancies between theory and experiment. The
theoretical curve only goes through the error bars on
two of the six points, and this is quite a bit less than
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we would expect statistically.

Graph (g) also shows disagreement between theory
and experiment, but now we have a clear systematic
error. In (h), the fifth data point looks like a mistake.
Ideally you would notice during lab that something
had gone wrong, and go back and check whether you
could reproduce the result.
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Appendix 5: Finding Power Laws from Data

For many people, it is hard to imagine how scientists
originally came up with all the equations that can
now be found in textbooks. This appendix explains
one method for finding equations to describe data
from an experiment.

Linear and nonlinear relationships
When two variables x and y are related by an equa-
tion of the form

y = cx ,

where c is a constant (does not depend on x or y),
we say that a linear relationship exists between x
and y. As an example, a harp has many strings of
different lengths which are all of the same thickness
and made of the same material. If the mass of a
string is m and its length is L, then the equation

m = cL

will hold, where c is the mass per unit length, with
units of kg/m. Many quantities in the physical world
are instead related in a nonlinear fashion, i.e., the
relationship does not fit the above definition of lin-
earity. For instance, the mass of a steel ball bearing
is related to its diameter by an equation of the form

m = cd3 ,

where c is the mass per unit volume, or density, of
steel. Doubling the diameter does not double the
mass, it increases it by a factor of eight.

Power laws
Both examples above are of the general mathemati-
cal form

y = cxp ,

which is known as a power law. In the case of a
linear relationship, p = 1. Consider the (made-up)
experimental data shown in the table.

h=height of rodent
at the shoulder
(cm)

f=food eaten per
day (g)

shrew 1 3
rat 10 300
capybara 100 30,000

It’s fairly easy to figure out what’s going on just
by staring at the numbers a little. Every time you
increase the height of the animal by a factor of 10, its
food consumption goes up by a factor of 100. This
implies that f must be proportional to the square of
h, or, displaying the proportionality constant k = 3
explicitly,

f = 3h2 .

Use of logarithms
Now we have found c = 3 and p = 2 by inspection,
but that would be much more difficult to do if these
weren’t all round numbers. A more generally appli-
cable method to use when you suspect a power-law
relationship is to take logarithms of both variables.
It doesn’t matter at all what base you use, as long as
you use the same base for both variables. Since the
data above were increasing by powers of 10, we’ll use
logarithms to the base 10, but personally I usually
just use natural logs for this kind of thing.

log10 h log10 f
shrew 0 0.48
rat 1 2.48
capybara 2 4.48

This is a big improvement, because differences are
so much simpler to work mentally with than ratios.
The difference between each successive value of h
is 1, while f increases by 2 units each time. The
fact that the logs of the f ′s increase twice as quickly
is the same as saying that f is proportional to the
square of h.

Log-log plots
Even better, the logarithms can be interpreted visu-
ally using a graph, as shown on the next page. The
slope of this type of log-log graph gives the power
p. Although it is also possible to extract the pro-
portionality constant, c, from such a graph, the pro-
portionality constant is usually much less interesting
than p. For instance, we would suspect that if p = 2
for rodents, then it might also equal 2 for frogs or
ants. Also, p would be the same regardless of what
units we used to measure the variables. The con-
stant c, however, would be different if we used dif-
ferent units, and would also probably be different for
other types of animals.
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Appendix 6: High Voltage Safety Checklist

Name:

Never work with high voltages by yourself.

Do not leave HV wires exposed - make sure
there is insulation.

Turn the high-voltage supply off while working
on the circuit.

When the voltage is on, avoid using both hands
at once to touch the apparatus. Keep one hand in
your pocket while using the other to touch the ap-
paratus. That way, it is unlikely that you will get a
shock across your chest.

It is possible for an electric current to cause
your hand to clench involuntarily. If you observe this
happening to your partner, do not try to pry their
hand away, because you could become incapacitated
as well — simply turn off the switch or pull the plug
out of the wall.
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Appendix ??: Comment Codes for
Lab Writeups

A. General
a1. Don’t write numbers without units.
(25% off)
a2. If something is wrong, cross it out.
Don’t make me guess which version to
grade.
a3. Your writeup is too long. The length
limit is 3 pages, not including raw data.
a4. If your writeup includes printouts, sta-
ple them in sideways with a single staple.
a5. See appendix 1 for the format of lab
writeups.
a6. Don’t state speculation as a firm con-
clusion.
a7. Leave more space for me to write com-
ments.
a8. Cut unnecessary words. Use active
voice. Write in a simple, direct style.
a9. Don’t write walls of text. Use para-
graph breaks.
a10. Cut any sentence that doesn’t carry
information.
a11. This paragraph needs a topic sentence.
a12. Express this as an equation.
a13. Don’t present details unless you’ve
already made it clear why we would care.
Don’t write slavishly in chronological order.
a14. The first sentence of any piece of writ-
ing must make an implicit promise that the
remainder will interest the reader.
B. Raw data
b1. Don’t mix raw data with calculations.
(25% off)
b2. Write raw data in pen, directly in the
notebook.
b3. This isn’t raw data. This is a summary
or copy.
C. Procedure
c1. Don’t repeat the lab manual.
c2. Don’t write anything about your proce-
dure unless it’s something truly original that
you think I would be interested in knowing
about, or I wouldn’t be able to understand
your writeup without it.
D. Abstract – see appendix 1

d1. Your abstract is too long.
d2. Don’t recap raw data in your abstract.
d3. Don’t describe calculations in your ab-
stract.
d4. The only numbers that should be in
your abstract are important final results
that support your conclusion or that consti-
tute the purpose of the lab.
d5. Your abstract needs to include numeri-
cal results that support your conclusions.
d6. Give error bars in your abstract.
d7. Where is your abstract?
d8. Your abstract is for results. This isn’t
a result of your experiment.
d9. This isn’t important enough to go in
your abstract.
d10. What was the point of the lab, and
why would anyone care?
d11. Don’t just give results. Interpret them.
d12. We knew this before you did the lab.
d13. This lab was a quantitative test. Re-
stating it qualitatively isn’t interesting.
d14. This lab is a comparison of theory and
experiment. Did they agree, or not?
d15. Your results don’t support your con-
clusions. Write about what really hap-
pened, not what you wanted to happen.
d16. One observation can never prove a
general rule.
E. Error analysis – see appendices 2
and 3
e1. A standard deviation only measures
error if it comes from numbers that were
supposed to be the same, e.g., repeated
measurements of the same thing.
e2. In propagation of errors, don’t do both
high and low. See appendix 3.
e3. In propagation of errors, only change
one variable at a time. See appendix 3.
e4. Don’t round severely when calculat-
ing Q’s. Your Q’s are just measuring your
rounding errors.
e5. A Q is the amount by which the output
of the calculation changes, not its inputs.
e6. A Q is a change in the result, not the
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result itself.
e7. Use your error bars in forming your
conclusions. Otherwise what was the point
of calculating them?
e8. Give a probabilistic interpretation, as
in the examples at the end of appendix 2.
e9. You’re interpreting this probability in-
correctly. It’s the probability that your
results would have differed this much from
the hypothesis, if the hypothesis were true.
e10. % errors are useless. Teachers have
you do them if you don’t know about real
error analysis.
e11. If random errors are included in your
propagation of errors, listing them here ver-
bally is pointless.
e12. Don’t speculate about systematic er-
rors without investigating them. Estimate
their possible size. Would they produce an
effect in the right direction?
G. Graphing – see appendix 4
g1. Label the axes to show what variables
are being graphed and what their units are,
e.g., x (km).
g2. Your graph should be bigger.
g3. If graphing by hand, do it on graph
paper.
g4. Choose an appropriate scale for your
graph, so that the data are not squished
down. Don’t just accept the default from
the software if it’s wrong. See app. 4 for
how to do this using Libre Office.
g5. “Dot to dot” style is wrong in a scien-

tific graph.
g6. The independent variable (the one you
control directly) goes on the x axis, and the
dependent variable on the y. Or: cause on
x, effect on y.
g7. On a scientific graph, use dots to show
data, a line or curve for theory or a fit to
the data.
g8. “Trend line” is scientifically illiterate.
It’s called a line of best fit.
S. Calculations and sig figs
s1. Think about the sizes of numbers and
whether they make sense. This number
doesn’t make sense.
s2. Where did this number come from?
s3. This number has too many sig figs (e.g.,
more than the number of sig figs in the raw
data).
s4. Don’t round off severely for sig figs at
intermediate steps. Rounding errors can ac-
cumulate.
s5. You’re wasting your time by writing
down many non-significant figures.
s6. Your result has too many sig figs. The
error bars show that you don’t have this
much precision.
s7. The Calculations and Reasoning sec-
tion usually just consists of the calculations
you’ve already written.You don’t need to
write a separate narrative.
s8. Put your calculator in scientific notation
mode.




