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1 Interactions

Apparatus
single neodymium magnet . . . . . . . . . . . . . . . . 1/group
large neodymium magnet . . . . . . . . . . . . . . . . . 1/group
compass
triple-arm balance . . . . . . . . . . . . . . . . . . . . . . . . 2/group
clamp and 50-cm vertical rod for holding balance up
string
tape
scissors
pencils
spring scales
rubber stoppers

Goal
Form hypotheses about interactions and test them.

Introduction
Why does a rock fall if you drop it? The ancient
Greek philosopher Aristotle theorized that it was be-
cause the rock was trying to get to its natural place,
in contact with the earth. Why does a ball roll if you
push it? Aristotle would say that only living things
have the ability to move of their own volition, so the
ball can only move if you give motion to it. Aristo-
tle’s explanations were accepted by Arabs and Euro-
peans for two thousand years, but beginning in the
Renaissance, his ideas began to be modified drasti-
cally. Today, Aristotelian physics is discussed mainly
by physics teachers, who often find that their stu-
dents intuitively believe the Aristotelian world-view
and strongly resist the completely different version
of physics that is now considered correct. It is not
uncommon for a student to begin a physics exam
and then pause to ask the instructor, “Do you want
us to answer these questions the way you told us was
true, or the way we really think it works?” The idea
of this lab is to make observations of objects, mostly
magnets, pushing and pulling on each other, and to
figure out some of the corrections that need to be
made to Aristotelian physics.

Some people might say that it’s just a matter of
definitions or semantics whether Aristotle is correct
or not. Is Aristotle’s theory even testable? One
testable feature of the theory is its asymmetry. The

Aristotelian description of the rock falling and the
ball being pushed outlines two relationships involv-
ing four objects:

According to Aristotle, there are asymmetries in-
volved in both situations.

(1) The earth’s role is not interchangeable with that
of the rock. The earth functions only as a place
where the rock tends to go, while the rock is an
object that moves from one place to another.

(2) The hand’s role is not analogous to the ball’s.
The hand is capable of motion all by itself, but the
ball can’t move without receiving the ability to move
from the hand.

If we do an experiment that shows these types of
asymmetries, then Aristotle’s theory is supported.
If we find a more symmetric situation, then there’s
something wrong with Aristotle’s theory.

Observations
The following important rules serve to keep facts
separate from opinions and reduce the chances of
getting a garbled copy of the data:

(1) Take your raw data in pen, directly into your lab
notebook. This is what real scientists do. The point
is to make sure that what you’re writing down is
a first-hand record, without mistakes introduced by
recopying it. (If you don’t have your two lab note-
books yet, staple today’s raw data into your note-
book when you get it.)

(2) Everybody should record their own copy of the
raw data. Do not depend on a “group secretary.”

(3) If you do calculations during lab, keep them on
a separate page or draw a line down the page and
keep calculations on one side of the line and raw
data on the other. This is to distinguish facts from
inferences. (I will deduct 25% from your grade if you
mix calculations and raw data.)

(4) Never write numbers without units. Without
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units, a number is meaningless. There is a big dif-
ference bewteen “Johnny is six” and “Johnny is six
feet.” (I will deduct 25% from your grade if you
write numbers without units.)

Because this is the first meeting of the lab class,
there is no prelab writeup due at the beginning of
the class. Instead, you will discuss your results with
your instructor at various points.

A Comparing magnets’ strengths

To make an interesting hypothesis about what will
happen in part C, the main event of the lab, you’ll
need to know how the top (single) and bottom (large)
magnets’ strengths compare. Since the large mag-
net is made out of six of the small magnets stuck
together in a stack, it would seem logical that the
large magnet would be six times stronger than the
single, but in this part of the lab you’re going to find
out for sure.

Orient your magnet this way, as if it’s rolling toward the
compass from the north. With no magnet nearby, the
compass points to magnetic north (dashed arrow). The
magnet deflects the compass to a new direction.

One way of measuring the strength of a magnet is
to place the magnet to the north or south of the
compass and see how much it deflects (twists) the
needle of a compass. You need to test the magnets
at equal distances from the compass, which will pro-
duce two different angles.1 It’s also important to get
everything oriented properly, as in the figure.2

Make sure to take your data with the magnets far
enough from the compass that the deflection angle
is fairly small (say 5 to 30 ◦). If the magnet is close
enough to the compass to deflect it by a large an-
gle, then the ratio of the angles does not accurately

1There are two reasons why it wouldn’t make sense to find
different distances that produced the same angle. First, you
don’t know how the strengths of the effect falls off with dis-
tance; it’s not necessarily true, for instance, that the magnetic
field is half as strong at twice the distance. Second, the point
of this is to help you interpret part C, and in part C, the large
magnet’s distance from the single magnet is the same as the
single magnet’s distance from the first magnet.

2Laying the magnet flat on the table causes the compass
needle to try to tilt out of the horizontal plane, which it’s not
designed to do. Turning it so that it faces the compass also
doesn’t work, because it makes the magnet’s magnetic field
lie along the same north-south line as the Earth’s, rather than
perpendicular to it.

represent the ratio of the magnets’ strengths. After
all, just about any magnet is capable of deflecting
the compass in any direction if you bring it close
enough, but that doesn’t mean that all magnets are
equally strong.

B Qualitative observations of the interaction of
two magnets

Play around with the two magnets and see how they
interact with each other. Can one attract the other?
Can one repel the other? Can they act on each other
simultaneously? Do they need to be touching in or-
der to do anything to each other? Can A act on B
while at the same time B does not act on A at all?
Can A pull B toward itself at the same time that
B pushes A away? When holding one of the heavier
magnets, it may be difficult to feel when there is any
push or pull on it; you may wish to have one person
hold the magnet with her eyes closed while the other
person moves the other magnet closer and farther.

C Measurement of interactions between two mag-
nets

Once you have your data from parts A and B, you
are ready to form a hypothesis about the following
situation. Suppose we set up two balances as shown
in the figure. The magnets are not touching. The
top magnet is hanging from a hook underneath the
pan, giving the same result as if it was on top of the
pan. Make sure it is hanging under the center of the
pan. You will want to make sure the magnets are
pulling on each other, not pushing each other away,
so that the top magnet will stay in one place.

7



The balances will not show the magnets’ true masses,
because the magnets are exerting forces on each other.
The top balance will read a higher number than it
would without any magnetic forces, and the bot-
tom balance will have a lower than normal reading.
The difference between each magnet’s true mass and
the reading on the balance gives a measure of how
strongly the magnet is being pushed or pulled by the
other magnet.

How do you think the amount of pulling experienced
by the two magnets will compare? In other words,
which reading will change more, or will they change
by the same amount? Write down a hypothesis;
you’ll test this hypothesis in part C of the lab. If
you think the forces will be unequal predict their
ratio.

Discuss with your instructor your results from parts
A and B, and your hypothesis about what will hap-
pen with the two balances.

Now set up the experiment described above with two
balances. Since we are interested in the changes in
the scale readings caused by the magnetic forces, you
will need to take a total of four scale readings: one
pair with the balances separated and one pair with
the magnets close together as shown in the figure
above.

When the balances are together and the magnetic
forces are acting, it is not possible to get both bal-
ances to reach equilibrium at the same time, because
sliding the weights on one balance can cause its mag-
net to move up or down, tipping the other balance.
Therefore, while you take a reading from one bal-
ance, you need to immobilize the other in the hori-
zontal position by taping its tip so it points exactly
at the zero mark.

You will also probably find that as you slide the
weights, the pointer swings suddenly to the oppo-
site side, but you can never get it to be stable in
the middle (zero) position. Try bringing the pointer
manually to the zero position and then releasing it.
If it swings up, you’re too low, and if it swings down,
you’re too high. Search for the dividing line between
the too-low region and the too-high region.

If the changes in the scale readings are very small
(say a few grams or less), you need to get the mag-
nets closer together. It should be possible to get the
scale readings to change by large amounts (up to 10
or 20 g).

Part C is the only part of the experiment where you
will be required to analyze random errors using the
techniques outlined in Appendices 2 and 3 at the

back of the lab manual. Think about how you can
get an estimate of the random errors in your mea-
surements. Do you need to do multiple measure-
ments? Discuss this with your instructor if you’re
uncertain.

Don’t take apart your setup until lab is over, and
you’re completely done with your analysis — it’s no
fun to have to rebuild it from scratch because you
made a mistake!

D Measurement of interactions involving ob-
jects in contact

You’ll recall that Aristotle gave completely different
interpretations for situations where one object was
in contact with another, like the hand pushing the
ball, and situations involving objects not in contact
with each other, such as the rock falling down to
the earth. Your magnets were not in contact with
each other. Now suppose we try the situation shown
below, with one person’s hand exerting a force on the
other’s. All the forces involved are forces between
objects in contact, although the two people’s hands
cannot be in direct contact because the spring scales
have to be inserted to measure how strongly each
person is pulling. Suppose the two people do not
make any special arrangement in advance about how
hard to pull. How do you think the readings on the
two scales will compare? Write down a hypothesis,
and discuss it with your instructor before continuing.

Calibrate the spring scales by sliding the metal tabs.
Now carry out the measurement shown in the figure.

Self-Check
Do all your analysis in lab, including error analysis
for part C. Error analysis is discussed in appendices
2 and 3; get help from your instructor if necessary.

Analysis
In your writeup, present your results from all four
parts of the experiment, including error analysis for
part C.

The most common mistake is to fail to address the
point of the lab. If you feel like you don’t understand
why you were doing any of this, then you were miss-
ing out on your educational experience! See the back
of the lab manual for the format of lab writeups.
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Notes For Next Week
(1) Next week, when you turn in your writeup for
this lab, you also need to turn in a prelab writeup
for the next lab. on a separate piece of paper. The
prelab questions are listed at the end of the descrip-
tion of that lab in the lab manual. Never start a lab
without understanding the answers to all the prelab
questions; if you turn in partial answers or answers
you’re unsure of, discuss the questions with your in-
structor or with other students to make sure you
understand what’s going on.

(2) You should exchange phone numbers with your
lab partners for general convenience throughout the
semester. You can also get each other’s e-mail ad-
dresses by logging in to Spotter and clicking on “e-
mail.”

Rules and Organization
Collection of raw data is work you share with your
lab partners. Once you’re done collecting data, you
need to do your own analysis. E.g., it is not okay for
two people to turn in the same calculations, or on a
lab requiring a graph for the whole group to make
one graph and turn in copies.

You’ll do some labs as formal writeups, others as
informal “check-off” labs. As described in the syl-
labus, they’re worth different numbers of points, and
you have to do a certain number of each type by the
end of the semester.

The format of formal lab writeups is given in ap-
pendix 1 on page 48. The raw data section must
be contained in your bound lab notebook. Typically
people word-process the abstract section, and any
other sections that don’t include much math, and
stick the printout in the notebook to turn it in. The
calculations and reasoning section will usually just
consist of hand-written calculations you do in your
lab notebook. You need two lab notebooks, because
on days when you turn one in, you need your other
one to take raw data in for the next lab. You may
find it convenient to leave one or both of your note-
books in the cupboard at your lab bench whenever
you don’t need to have them at home to work on;
this eliminates the problem of forgetting to bring
your notebook to school.

For a check-off lab, the main thing I’ll pay attention
to is your abstract. The rest of your work for a
check-off lab can be informal, and I may not ask to
see it unless I think there’s a problem after reading
your abstract.
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2 The Local Gravitational Field

Note to the lab technician: The computers to use are
any of the following: Lassie, Dug, Buck, Ribsy, and
Mudge.

Apparatus
(two stations):
vertical plank with electromagnets
steel balls (2/station)
Linux computers with Audacity installed
spirit levels

Goal
Make a high-precision measurement of the strength
of the Earth’s gravitational field, g, in Fullerton.

Introduction
When objects fall, and all forces other than gravity
are negligible, we observe that the acceleration is the
same, regardless of the object’s mass, shape, density,
or other properties. However, the acceleration does
depend a little bit where on the earth we do the ex-
periment, and even bigger variations in acceleration
can be observed by, e.g., going to the moon. Thus,
this acceleration can be considered as a property of
space itself, and we can refer to it as the gravitational
field in that region of space. Just as you would use
a magnetic compass to find out about the magnetic
field in the classroom, you can use dropping masses
to find out about the gravitational field.

In this experiment, you’ll measure the gravitational
field, g, in the classroom to sufficiently high precision
that, if everybody does a good job and we pool and
average everyone’s data to reduce random errors, we
should be able to get a value that is measurably
different from the generic world-average value you
would find in a textbook.

Measuring g precisely
You will measure g, the acceleration of an object in
free fall, using electronic timing techniques. The idea
of the method is that you’ll have two steel balls hang-
ing underneath electromagnets at different heights.

You’ll simultaneously turn off the two magnets by
breaking the same electric circuit, causing the balls
to drop at the same moment. The ball dropped from
the lower height (h1) takes a smaller time (∆t1) to
reach the floor, and the ball released from the greater
height (h2) takes a longer time (∆t2). The time in-
tervals involved are short enough that due to the lim-
itations of your reflexes it is impossible to make good
enough measurements with stopwatch. Instead, you
will record the sounds of the two balls’ impacts on
the floor using the computer. The computer shows
a graph in which the x axis is time and the y axis
shows the vibration of the sound wave hitting the
microphone. You can measure the time between the
two visible “blips” on the screen. You will measure
three things: h1, h2, and the time interval ∆t2−∆t1
between the impact of the second ball and the first.
From these data, with a little algebra, you can find
g.

The experiment would have been easier to analyze if
we could simply drop a single ball and measure the
time from when it was released to when it hit the
floor. But since our timing technique is based on
sound, and no sound is produced when the balls are
released, we need to have two balls. If h1, the height
of the lower ball, could be made very small, then it
would hit the floor at essentially the same moment
the two balls were released (∆t1 would equal 0), and
∆t2−∆t1 would be essentially the same as ∆t2. But
we can’t make h1 too small or the sound would not
be loud enough to detect on the computer.

When measuring h1 and h2, use the spirit level to
get the two-meter stick accurately vertical.

Using the computer software
Start up the sound recording program, called Audac-
ity. Set the record level on high, using the control
marked − . . .+ next to the microphone icon. Try
recording a sound by clicking on the red “record”
button.

To measure the time interval between the balls’ im-
pacts, you can measure the time at which each clap
occurs, and then subtract. To measure a time, use
the ”I-beam” cursor and click on the feature you’re
interested in. Then click on the magnifying glass
icon with the plus sign in it to zoom in. If you zoom
in several times like this, you’ll start to see that your
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Two thumps, as recorded on the computer through the
microphone.

positioning of the cursor was a little off. Correct this
by clicking closer to the right place, and then zoom
in some more. Continue this process of zooming in
and correcting until you have measured the time as
well as possible. Read the time from the scale at the
top of the window.

Troubleshooting:

You may get this error message: “Error while
opening sound device. Please check the input
device settings and the project sample rate.”
Quit the program and restart it.

Some of the computers have very low or very
high gain on their microphones. To work around
this, do the following after you’ve recorded a
sound: type control-A to select the whole record-
ing, and then do Effect>Amplify; the default is
to amplify the sound by the maximum amount,
which is what you want. If the gain is too
high, it may be necessary to lower it using the
operating system’s gain control, but every OS
update seems to change the location of this
control.

If sound input isn’t working, it may be be-
cause the wrong sound input device is selected.
Right-click on the volume icon in the menu
bar. Under Edit:Preferences, check Mic select,
and under Options do Mic Select:Mic 0.

You should make a series of measurements, and make
sure they agree at the level of a few times 10−4 s; if
they don’t, there’s something wrong with your tech-
nique. Also, you should check that your result for g
makes sense.

Here are some common problems that cause incon-
sistent or wrong results:

The balls are brushing against the electrical
wires as they fall.

You’re misidentifying the thumps.

The surface the balls are dropping onto has
dents in it.

You’re not positioning the balls on the same
spot on the magnets every time.

To drop the balls, you should break the circuit
by pulling one of the banana-plug connectors
out of the plug on the front panel of the power
supply. Don’t use the switch; if you use the
switch, it takes some time for the magnetic
field to decay, and the balls stick for a while
before dropping.

Audacity will let you keep on making new record-
ings, stacking the graphs vertically. However,
if you do this you will introduce significant tim-
ing errors. The reason is probably that Audac-
ity is designed for use in multitrack recording
of music, so it tries to play back the previously
recorded tracks while recording the new one,
and on cheap sound hardware this causes little
timing glitches.

Analysis
Extract a value of g from your data.

Derive error bars on your result, using the techniques
in appendices 2 and 3.

Self-Check
Extract the value of g, with error bars. Read Ap-
pendix 3 for information on how to do error analysis
with propagation of errors; get help from your in-
structor if necessary.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

P1 If your instructor has assigned homework prob-
lem 26 from ch. 3 of Mechanics,don’t bother turning
in another copy of your work for this prelab question.
Derive an equation for g in terms of the quantities
you’ll measure, which are h1, h2, and the time inter-
val ∆t2 − ∆t1. The point of the lab is to measure
g, so don’t just say “well of course g is 9.8 m/s2.”
(You should check your equation by using the answer
checker for the homework problem.)
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3 Newton’s Second Law

Apparatus
pulley
spirit level
string
weight holders, not tied to string
two-meter stick
brass slotted weights (in lab benches in 415)
extra 1 g slotted weights
digital balance (Ohaus SP4001) . . . . . . . . . . . . . . . . . .3
stopwatch
foam rubber cushions
graphite lubricant

Goal
Find the acceleration of unequal weights hanging
from a pulley.

Observations

Set up unequal masses on the two sides of the pulley,
and determine the resulting acceleration by measur-
ing how long it takes for the masses to move a certain
distance. Use the spirit level to make the plane of
the pulley vertical; otherwise you get extra friction.
Use relatively large masses (typically half a kg or a
kg each side) so that friction is not such a big force

in comparison to the other forces, and the inertia
of the pulley is negligible compared to the inertia of
the hanging masses. Do several different combina-
tions of masses, but keep the total amount of mass
constant and just divide it differently between the
two holders. Remember to take the masses of the
holders themselves into account. Make sure to per-
form your measurements with the longest possible
distance of travel, because you cannot use a stop-
watch to get an accurate measurement of very short
time intervals. The best results are obtained with
combinations of weights that give times of about 4
to 20 seconds. (Times greater than that range in-
dicate very low accelerations, which don’t work well
because friction becomes a big effect.)

The brass weights were manufactured by the friendly
crack-smoking hillbillies at Glakad Science in North
Carolina. They have a tolerance (not disclosed in
the distributor’s catalog) of ±2%, meaning that a
500 g weight could be off by as much as ten grams!
Because of this, you will need to weigh your stacks
of weights on a digital balance to find out what they
really are.

Count your weights before you start and make sure
you have the full set listed on the box. During the
lab, keep the small ones on the holder. At the end
of lab, count your weights again.

Your stopwatch timing errors are determined by your
reflexes, which are presumably the same for all mass
combinations. You’ll need to take a large number
of trials at some mass combination in order to find
this error accurately. It is pointless, however, to do
multiple trials for every mass combination.

Self-Check
Compare theoretical and experimental values of ac-
celeration for one of your mass combinations. Check
whether they come out fairly consistent.

Analysis
Use your measured times and distances to find the
actual acceleration, and make a graph of this versus
M −m. See appendix 4 re graphing. Show these ex-
perimentally determined accelerations as dots. Over-
laid on the same graph, show the theoretical equa-
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tion (problem 5-20) as a line or curve, as in the ex-
amples in 4. Use propagation of errors (appendix 3)
to determine error bars for your accelerations, and
show them on your graph. Even though all the times
have the same error bars, the accelerations will not.
As in the examples in appendix 4, compare theory
and experiment: did they agree to within your error
bars?

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

P1 Criticize the following reasoning: The weight
fell 1.0 m in 1 s, so v = 1 m/s, and a = v/t = 1 m/s2.

P2 Since that won’t work, plan how you really will
determine your experimental accelerations based on
your measured distance and times.

P3 Skip this question if the corresponding home-
work problem has already been assigned. Use New-
ton’s second law to find a theoretical prediction for
the acceleration a in terms of g and the masses M
and m.
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4 Vector Addition of Forces

Apparatus
force sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4/group
LabPro interface (in lab benches in 415)
string
butcher paper
500 g hooked weight (in lab benches in 415)
right-angle clamp
30-cm steel rod
spirit level

Goal
Test whether the vector sum of the forces acting on
an object at rest is equal to zero.

Introduction
Modern physics claims that when a bridge, an earth-
quake fault, or an oak tree doesn’t move, it is be-
cause the forces acting on it, which combine accord-
ing to vector addition, add up to zero. Although
this may seem like a reasonable statement, it was
far from obvious to premodern scientists. Aristotle,
for instance, said that it was the nature of each of
the four elements, earth, fire, water and air, to re-
turn to its natural location. Rain would fall from
the sky because it was trying to return to its natu-
ral location in the lakes and oceans, and once it got
to its natural location it would stop moving because
that was its nature.

When a modern scientist considers a book resting on
a table, she says that it holds still because the force
of gravity pulling the book down is exactly canceled
by the normal force of the table pushing up on the
book. Aristotle would have denied that this was pos-
sible, because he believed that at any one moment an
object could have only one of two mutually exclusive
types of motion: natural motion (the tendency of the
book to fall to the ground, and resume its natural
place), and forced motion (the ability of another ob-
ject, such as the table, to move the book). According
to his theory, there could be nothing like the addi-
tion of forces, because the object being acted on was
only capable of “following orders” from one source at
a time. The incorrect Aristotelian point of view has
great intuitive appeal, and beginning physics stu-

dents tend to make Aristotelian statements such as,
“The table’s force overcomes the force of gravity,”
as if the forces were having a contest, in which the
victor annihilated the loser.

Observations
The apparatus consists of four taut strings, each
pulling in a different direction in the horizontal plane.
Each string is connected to a force sensor that can
be read out on a computer, giving the magnitude of
the force vector.

Set the force sensors on their 10 N scales using the
switch on each sensor. Plug the sensors into channels
1 through 4 on the LabPro interface, and connect the
interface to the USB port of the Windows machine.
From the Start menu, go to All Programs, Vernier
Software, Logger Pro 3.8. When you start up the
software, it will automatically detect the four sensors
and start displaying their readings.

Possible computer hassles:

If the readings are displayed in a small font,
you can make them bigger by clicking on the
surrounding box and using the little black tabs
to resize it.

Normally the computer automatically detects
the sensor and sets itself up properly. If this
doesn’t happen at all, you need to do the setup
manually under Experiment:Set up sensors:Show
all interfaces.

If the computer incorrectly identifies all of the
sensors as some other type of sensor, the prob-
lem is probably that one of the sensors has a
damaged connected. Disconnect all the sen-
sors and test them one at a time to find the
damaged one.
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If less than four sensors show up on the screen,
the problem may be the same as the one de-
scribed in the preceding item. A damaged con-
nector on one sensor can cause other sensors
not to work. Test the sensors one at a time.

Push and pull on the sensors, and verify that they
can measure forces. What do you notice about the
signs of the forces? You will notice that when you
don’t apply any force to a sensor, its reading is small,
but not exactly zero. With the sensors placed hor-
izontally, use the software’s blue ∅ button to zero
them all, so that this systematic error is eliminated.
If you now rotate a sensor so that its hook is pointing
down, you should see that the force reading changes
by a certain amount, which is the weight of the hook,
about 0.21 N.

Try pushing gently sideways on the force sensor. You
will see that it doesn’t sense the force. Each sensor
can only measure the component of the force along
its own axis.

After taking real data, you’ll do a complete calibra-
tion of the sensors. They drift over time, so a cali-
bration done right now wouldn’t be useful. However,
sometimes we have sensors that are off by a very
large amount such as 50%, and in that case it’s bet-
ter to find out about that now, because it will make
it look like your data don’t even make sense. As a
quick check, try pairs of sensors hooked together and
pulling against each other, and make sure that they
seem to at least approximately obey Newton’s third
law.

Cut off a piece of butcher paper. Tie strings to the
sensors in the arrangement shown in the diagram.
After some trial and error, I’ve found the following
technique to minimize the pain of tying the strings.
Let the sensors be 1, 2, 3, and 4, in order around
the circle, as in the figure. The idea is to connect 1
and 2 with a string, and also 3 and 4, with the 1-2
string and 3-4 string wrapping around each other at
an intersection-point at the center.1 At each of the
hooks, tie an overhand knot on a bight; this knot is
easy to tie and throw over a hook, and will not slip.

To keep the sensors in place and apply tension to the
strings, stick a pencil or a skinny pen into the hole in
each one, and grip the pencil. This allows the sensor
to naturally swing into position so that its axis is
parallel to the string. Holding the sensors’ housings

1Because of friction at the intersection, the four tensions
can all be different. If the strings were frictionless, we would
be guaranteed to have T1 = T2 and T3 = T4 with this ar-
rangement, and that probably wouldn’t allow us to get the
right forces for equilibrium.

in your hands doesn’t work, because it results in a
misalignment.

Avoid a symmetric arrangement of the strings (e.g.,
don’t space them all 90 degrees apart), and don’t
make any forces collinear with each other.

The angles are the main source of random error.
Once you have a setup that’s adjusted approximately
the way you want, you can draw lines on the paper
with a ruler, then carefully locate the strings above
the lines. The angles of the lines on the paper are
easy to measure accurately.

Try to get the forces to be roughly 3 to 7 N. Although
the sensors are labeled “10 N,” some of them actually
max out at 9 or 9.5 N. The sensors will not give any
error or warning if this limit is exceeded. They will
simply max out at some reading, and this reading
will be incorrect. When increasing the tension in
a string, keep an eye on the reading on the screen;
if it stops increasing, you’ve exceeded that sensor’s
limit. Once you think you have a good equilibrium,
check that when you increase the tension a little, the
reading actually goes up.

Before taking your final data, temporarily relax the
tension on the strings and redo the zeroing of the
sensors, which we have found will drift over time.

Take all the data you will need in order to carry out
the vector addition of the four forces. To decrease
the random errors in the force measurements, you
can tell the software to average the data over a pe-
riod of time. Click on the Collect button to make a
graph. Then highlight part of the graph, and go to
Analyze:Statistics.

As a cross-check in case confusion arises later about
how your angles were defined, which force was which,
etc., write down on the butcher paper which sensor
was which. Also, mark the sensors 1, 2, 3, and 4
with masking tape.

The sensors differ from each other quite a bit in their
calibration, with four freshly zeroed sensors giving
readings that covered a range of about 5% when used
to measure a 500 g weight. To eliminate this error,
set up the 30-cm steel bar horizontally and mount all
four sensors on it vertically, with their hooks point-
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ing down. Zero the sensors again so that the weights
of the hooks are tared out. Hang the 500 g weight
from each sensor, and use these readings to rescale
each sensor’s reading from the vector addition setup
by the proper amount.

Self-Check
Do a preliminary rough analysis of your results using
graphical addition.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

P1 Describe a typical scale that you might use for
drawing force vectors on a piece of paper, e.g., how
long might you choose to make a 1-N force? Assume
that your forces are from 5 to 10 newtons, and pick
a scale that results in a drawing that is as big as it
can be (for maximum precision) while still fitting on
a piece of paper.

P2 Thinking ahead to your analytic addition of the
forces, which of the following would be the most con-
venient form in which to have your angle measure-
ments? — (1) the angles of the four “pie slices,” (2)
the angle of each string measured clockwise around
the table, or (3) the angle of each string measured
counterclockwise around the table.

Analysis
Calculate the magnitude of vector sum of the forces
on the ring both graphically and analytically, using
the corrected data. Use the graphical result to check
that the analytic calculations were correct.

Propagation of error for this lab could in principle be
very time-consuming, since you would have to redo
the vector addition eight times for the eight pieces
of raw data (four angles and four magnitudes). To
avoid this, take the following shortcuts: (1) Whichever
is larger, Ftotal,x or Ftotal,y, just do error analysis on
that component. (2) The random errors in the result
are dominated by the errors in the angles, so don’t
bother propagating the error from the magnitudes.

Are your results consistent with theory, taking into
account the random errors involved? Perform a sta-

tistical test like the one in the example on p. 53
(“How significant?”).
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5 Acceleration In Two Dimensions

Apparatus
air track (small)
cart
LabPro-compatible photogates (in lab benches in 415)
computer
air blowers (in cupboards under lab benches)
vernier calipers (for measuring wood blocks)
wood blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3/group
angle brackets

Goal
Test whether the acceleration of gravity acts like a
vector.

Introduction
Vectors rule the universe. Entomologists say that
God must have had an inordinate fondness for bee-
tles, because there are so many species of them.
Well, God must also have had a special place in her
heart for vectors, because practically every natural
phenomenon she invented is a vector: gravitational
acceleration, electric fields, nuclear forces, magnetic
fields, all the things that tie our universe together
are vectors.

Setup
The idea of the lab is that if acceleration really acts
like a vector, then the cart’s acceleration should equal

the component of the earth’s gravitational accelera-
tion vector that is parallel to the track, because the
cart is only free to accelerate in the direction along
the track. There is almost no friction, since the cart
rides on a cushion of air coming through holes in the
track.

The speed of the cart at any given point can be mea-
sured as follows. The photogate consists of a light
and a sensor on opposite sides of the track. When
the cart passes by, the cylindrical vane on top blocks
the light momentarily, keeping light from getting to
the sensor. The computer detects the electrical sig-
nal from the sensor, and records the amount of time,
tb, for which the photogate was blocked. Given tb,
you can determine the approximate speed that cart
had when it passed through the photogate. The
computer software for measuring the time is on the
Linux computers in 415. Plug the photogate into
the DIG1 plug on the interface box, and connect the
interface box to the computer using the USB cable.
Double-click on the icon that says “photogate.”

Observations
The basic idea is to release the cart at a distance x
away from the photogate. The cart accelerates, and
you can determine its approximate speed, v, when it
passes through the photogate. (See prelab question
P1.)

From v and x, you can find the acceleration. You will
take data with the track tilted at several different
angles, to see whether the cart’s acceleration always
equals the component of g parallel to the track.

You can level the track to start with by adjusting
the screws until the cart will sit on the track without
accelerating in either direction.

The distance x can be measured from the starting
position of the cart to half-way between the point
where it first blocks the photogate and the point
where it unblocks the photogate. You can determine
where these positions are by sliding the cart into the
photogate and watching the red LED on the top of
the photogate, which lights up when it is blocked.

Hints:

Keep in mind that if the cart rebounds at the
bottom of the track and comes back up through
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the gate, you will get a second, bogus time
reading.

Note that you have no way to measure accu-
rately to the total amount of time over which
the cart picked up speed (which would be sev-
eral seconds) — what you measure is the very
short time required for the cart to pass through
the photogate.

Release the cart by hand after starting up the
air pump. If you leave the cart on the track
and then turn on the pump, there will be a
period of time when the pump is first starting
up, and the cart will drag.

The variable x actually changes a little when
you change θ, so don’t just assume it’s always
the same.

Once you have data at your first angle, check
whether theory and experiment agree reason-
ably well.

You’ll use the photogates again in lab 10, so make
sure you understand the technique thoroughly, and
take notes on it so you’ll remember how it’s done.

We use wood blocks to raise the track to various an-
gles. To measure the thickness of the blocks, you will
use special calipers that have a vernier scale, which is
a tricky device that allows you to measure distances
to a precision of about a tenth of a millimeter —
about ten times better than eyeball precision with a
ruler. Your instructor will teach you how to use the
vernier scale.

The accurate measurement of the width of the vane,
w, is critical to the whole experiment. This has al-
ready been done for you, using the technique de-
scribed at the end of the lab. The results, in cm, are
as follows.

1A 2.13 1B 2.18 1C 2.05
2A 2.11 2B 2.13 2C 2.14
3A 2.10 3B 2.18 3C 2.07
4A 2.10 4B 2.12 4C 2.14
5A 2.15 5B 2.18 5C 2.14
6A 2.11 6B 2.15 6C 2.19
7A 2.15 7C 2.16

Technique for measuring the width
of the vane
Students don’t need to do this.

Ideally we would like to simply close the vernier
calipers snugly on the cylindrical vane and take a

reading of its diameter. This is the way the calipers
are intended to be used. However, the beam of the
photogate has a finite width, and the electronics in
the photogate are only roughly calibrated to turn on
and off when the edge of the vane intersects the cen-
ter of the beam, blocking half its light. Therefore,
I had one of my classes in 2011 use an arrangement
like the one below to determine the effective width
of the vane when it is used with your own photogate.
The idea is to use the moving jaw of the calipers to
push the cart from the point where it enters your
photogate to the point where it exits, as determined
by the LED on top. I have found that the photo-
gates differ from one another by about a millimeter,
so that if you don’t do this calibration with your own
photogate, your velocities will be off by as much as
5%.

Self-Check
Find the theoretical and experimental accelerations
for one of your angles, and see if they are roughly
consistent.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.
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P1 Skip this question if the corresponding home-
work problem has already been assigned. (a) If w is
the width of the vane, and tb is defined as suggested
above, what is the speed of the cart when it passes
through the photogate? (b) Based on v and x, how
can you find a?

P2 It is not possible to measure θ accurately with
a protractor. How can θ be determined based on
the distance between the feet of the air track and
the height of the wood block? To figure out how to
actually apply the trig to the lab, you will need to
draw a side view of the track with enough detail to
show the track as a rectangle and the feet sticking
out.

Analysis
Extract the acceleration for each angle at which you
took data. Make a graph with θ on the x axis and
acceleration on the y axis. Show your measured ac-
celerations as points, and the theoretically expected
dependence of a on θ as a smooth curve.

Error analysis is not required for this lab, because
the random errors are small compared to systematic
errors such as the imperfect leveling of the track,
friction, warping of the track, and the measurement
of w. Appendix 4 shows some examples of how to
compare theory and experiment on a graph.

20 Lab 5 Acceleration In Two Dimensions



21



6 Conservation Laws

Apparatus
Part A: vacuum pump (Lapine) . . . . . . . . . . . . . . . . . 1
electronic balance (Ohaus Scout Pro) . . . . . . . . . . . . 1
plastic-coated flask . . . . . . . . . . . . . . . . . . . . . . . 1/group
Part B: beaker . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
propyl alcohol 200 mL/group
canola oil 200 mL/group
funnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2/group
100-mL volumetric flask . . . . . . . . . . . . . . . . . . 1/group
1-ml pipette and bulb . . . . . . . . . . . . . . . . . . . . 1/group
magnetic stirrer . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
triple-beam balance . . . . . . . . . . . . . . . . . . . . . . .1/group

Goal
People believe that objects cannot be made to disap-
pear or appear. If you start with a certain amount
of matter, there is no way to increase or decrease
that amount. This type of rule is called a conser-
vation law in physics, and this specific law states
that the amount of matter is conserved, i.e., must
stay the same. In order to make this law scientifi-
cally useful, we must define more carefully how the
“amount” of a substance is to be defined and mea-
sured numerically. Specifically, there are two issues
that scientifically untrained people would probably
not agree on:

Should air count as matter? If it has weight,
then it probably should count. In this lab, you
will find out if air has weight, and, if so, mea-
sure its density.

Should the amount of a substance be defined in
terms of volume, or is mass more appropriate?
In this lab, you will determine whether mass
and/or volume is conserved when water and
alcohol are mixed.

Introduction
Styles in physics come and go, and once-hallowed
principles get modified as more accurate data come
along, but some of the most durable features of the
science are its conservation laws. A conservation law
is a statement that something always remains con-
stant when you add it all up. Most people have a

general intuitive idea that the amount of a substance
is conserved. That objects do not simply appear
or disappear is a conceptual achievement of babies
around the age of 9-12 months. Beginning at this
age, they will try to retrieve a toy that they have
seen being placed under a blanket, rather than just
assuming that it no longer exists. Conservation laws
in physics have the following general features:

Physicists trying to find new conservation laws
will try to find a measurable, numerical quan-
tity, so that they can check quantitatively whether
it is conserved. One needs an operational def-
inition of the quantity, meaning a definition
that spells out the operations required to mea-
sure it.

Conservation laws are only true for closed sys-
tems. For instance, the amount of water in a
bottle will remain constant as long as no wa-
ter is poured in or out. But if water can get in
or out, we say that the bottle is not a closed
system, and conservation of matter cannot be
applied to it.

The quantity should be additive. For instance,
the amount of energy contained in two gallons
of gasoline is twice as much as the amount of
energy contained in one gallon; energy is addi-
tive. An example of a non-additive quantity is
temperature. Two cups of coffee do not have
twice as high a temperature as one cup.

Conservation laws always refer to the total amount
of the quantity when you add it all up. If you
add it all up at one point in time, and then
come back at a later point in time and add it
all up, it will be the same.

How can we pin down more accurately the concept
of the “amount of a substance”? Should a gallon
of shaving cream be considered “more substantial”
than a brick? At least two possible quantities come
to mind: mass and volume. Is either conserved?
Both? Neither? To find out, we will have to make
measurements.

We can measure mass by the “see-saw method” —
when two children are sitting on the opposite sides
of a see-saw, the less massive one has to move far-
ther out from the fulcrum to make it balance. If we
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enslave some particular child as our permanent mass
standard, then any other child’s mass can be mea-
sured by balancing her on the other side and mea-
suring her distance from the fulcrum. A more prac-
tical version of the same basic principle that does
not involve human rights violations is the familiar
pan balance with sliding weights.

Volume is not necessarily so easy to measure. For
instance, shaving cream is mostly air, so should we
find a way to measure just the volume of the bub-
bly film itself? Precise measurements of volume can
most easily be done with liquids and gases, which
conform to a vessel in which they are placed.

Should a gas, such as air, be counted as having any
substance at all? Empedocles of Acragas (born ca.
492 BC) was the originator of the doctrine that all
material substances are composed of mixtures of four
elements: earth, fire, water and air. The idea seems
amusingly naive now that we know about the chem-
ical elements and the periodic table, but it was ac-
cepted in Europe for two thousand years, and the
inclusion of air as a material substance was actu-
ally a nontrivial concept. Air, after all, was invis-
ible, seemed weightless, and had no definite shape.
Empedocles decided air was a form of matter based
on experimental evidence: air could be trapped un-
der water in an inverted cup, and bubbles would be
released if the cup was tilted. In China around 300
BC, Zou Yan came up with a similar theory, and his
five elements did not include air.

Does air have weight? Most people would probably
say no, since they do not feel any physical sensation
of the atmosphere pushing down on them. A delicate
house of cards remains standing, and is not crushed
to the floor by the weight of the atmosphere.

But compare that to the experience of a dolphin.
A dolphin might contemplate a tasty herring sus-
pended in front of it and conjecture that water had
no weight, because the herring did not involuntarily
shoot down to the sea floor because of the weight of
the water overhead. Water does have weight, how-
ever, which a sufficiently skeptical dolphin physicist
might be able to prove with a simple experiment.
One could weigh a 1-liter metal box full of water and
then replace the water with air and weigh it again.
The difference in weight would be the difference in
weight between 1 liter of water and 1 liter of air.
Since air is much less dense than water, this would
approximately equal the weight of 1 liter of water.

Our situation is similar to the dolphin’s, as was first
appreciated by Torricelli, whose experiments led him
to conclude that “we live immersed at the bottom

of a sea of...air.” A human physicist, living her life
immersed in air, could do a similar experiment to
find out whether air has weight. She could weigh a
container full of air, then pump all the air out and
weigh it again. When all the matter in a container
has been removed, including the air, we say that
there is a vacuum in the container. In reality, a
perfect vacuum is very difficult to create. A small
fraction of the air is likely to remain in the container
even after it has been pumped on with a vacuum
pump. The amount of remaining air will depend
on how good the pump is and on the rate at which
air leaks back in to the container through holes or
cracks.

Cautions

Please do not break the glassware! The vacuum
flasks and volumetric flasks are expensive.

The alcohol you will be using in this lab is chemically
different from the alcohol in alcoholic drinks. It is
poisonous, and can cause blindness or death if you
drink it. It is also flammable.

Observations
A Density of air

You can remove the air from the flask by attach-
ing the vacuum pump to the vacuum flask with the
rubber and glass tubing, then turning on the pump.
You can use the scale to determine how much mass
was lost when the air was evacuated.

Make any other observations you need in order to
find out the density of air and to estimate error bars
for your result.

B Is volume and/or mass conserved when two
fluids are mixed?

The idea here is to find out whether volume and/or
mass is conserved when water and alcohol are mixed.
The obvious way to attempt this would be to mea-
sure the volume and mass of a sample of water, the
volume and mass of a sample of alcohol, and their
volume and mass when mixed. There are two prob-
lems with the obvious method: (1) when you pour
one of the liquids into the other, droplets of liquid
will be left inside the original vessel; and (2) the
most accurate way to measure the volume of a liq-
uid is with a volumetric flask, which only allows one
specific, calibrated volume to be measured.

Here’s a way to get around those problems. Put the
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magnetic stirrer inside the flask. Pour water through
a funnel into a volumetric flask, filling it less than
half-way. (Do not use the pipette to transfer the
water.) A common mistake is to fill the flask more
than half-way. Now pour a thin layer of cooking
oil on top. Cooking oil does not mix with water,
so it forms a layer on top of the water. (Set aside
one funnel that you will use only for the oil, since
the oil tends to form a film on the sides.) Finally,
gently pour the alcohol on top. Alcohol does not mix
with cooking oil either, so it forms a third layer. By
making the alcohol come exactly up to the mark on
the calibrated flask, you can make the total volume
very accurately equal to 100 mL. In practice, it is
hard to avoid putting in too much alcohol through
the funnel, so if necessary you can take some back
out with the pipette.

If you put the whole thing on the balance now, you
know both the volume (100 mL) and the mass of
the whole thing when the alcohol and water have
been kept separate. Now, mix everything up with
the magnetic stirrer. The water and alcohol form a
mixture. You can now test whether the volume or
mass has changed.

If the mixture does not turn out to have a volume
that looks like exactly 100 mL, you can use the fol-
lowing tricks to measure accurately the excess or
deficit with respect to 100 mL. If it is less than 100
mL, weigh the flask, pipette in enough water to bring
it up to 100 mL, weigh it again, and then figure out
what mass and volume of water you added based
on the change in mass. If it is more than 100 mL,

weigh the flask, pipette out enough of the mixture
to bring the volume down to 100 mL, weigh it again,
and make a similar calculation using the change in
mass and the density of the mixture. If you need to
pipette out some of the oily mixture, make sure to
wash and rinse the pipette thoroughly afterwards.

Note for next week’s lab: You will need safety gog-
gles for next week’s lab. The school considers this
to be something students are responsible for buy-
ing. You can buy them at the bookstore, Home De-
pot, etc. The physics department has accumulated a
small hoard of goggles, and some of you may already
have goggles from a chem class. To save money, you
may wish to pool your money and buy only the addi-
tional number that are actually needed. If you would
like to donate the goggles to us, we’d appreciate it.
You should also wear close-toed shoes to lab next
week.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

P1 Suppose that the initial mass in part B is
mi = 280.3± 0.3 g and the final mass (after mixing)
is mf = 281.8 ± 0.3 g, with the error bars as deter-
mined in appendix 2. Calculate the change in mass
∆m, and use the technique described in appendix 3
to find the error bars on this result.

P2 As in the example in appendix 2, find out by
how many standard deviations this result for ∆m
differs from zero, and give a probabilistic interpre-
tation of whether or not this is consistent with con-
servation of mass.

Self-Check
Do a quick analysis of both parts without error anal-
ysis. Plan how you will do your error analysis.

Analysis
A. If your results show that air has weight, determine
the (nonzero) density of air, with an estimate of your
random errors.

B. Decide whether volume and/or mass is conserved
when alcohol and water are mixed, taking into ac-
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count your estimates of random errors.
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7 Absolute Zero

Note to the students: As (hopefully) announced pre-
viously, you need to wear close-toed shoes, and it is
up to you to buy your own safety glasses, although
the physics department has a few.

Note to the lab technician: Please put the alcohol
and acetone in a freezer overnight, then put them in
the ice chest right before lab. Please also purchase
dry ice. When you put out the waste disposal con-
tainer, please don’t leave the cap with it, because
we don’t want students to screw on the cap; if they
did, evaporating dry ice could make it explode like
a bomb.

Apparatus
electric heating pad
oven mitts
latex tubing
ice chest to keep liquids cool
acetone (1.5 liter for the whole class)
alcohol
mineral oil
waste disposal container
dry ice (9 lb)
tongs
hammer
funnels
gas pressure sensor
temperature probe
125 ml Erlenmyer flask
600 ml beaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2/group
safety goggles
fold-top sandwich bags

Introduction
If heat is a form of random molecular motion, then
it makes sense that there is some minimum temper-
ature at which the molecules aren’t moving at all.
With fancy equipment, physicists have gotten sam-
ples of matter to within a fraction of a degree above
absolute zero, but they have never actually reached
absolute zero (and the laws of thermodynamics ac-
tually imply that they never can). Nevertheless, we
can determine how cold absolute zero is without even
getting very close to it. Kinetic theory tells us that
heat is composed of random molecular motion, and

temperature is interpeted as a measure of the av-
erage kinetic energy per molecule; the zero of the
absolute temperature scale occurs when all molecu-
lar motion is eliminated. Suppose we heat up a gas
so that the typical speeds of the atoms are doubled.
The kinetic energy depends on v2, so the result is
that the temperature is quadrupled:

T → 4T

In this lab, we’ll be heating and cooling air while it is
sealed inside a flask with a fixed volume. We won’t
actually be quadrupling the absolute temperature in
this lab, but just to get the idea, let’s pretend that
we were. The hot gas exerts more pressure on the
inside of the flask, for two reasons: (1) the molecules
are moving twice as fast, so when they hit the sides
of the flask, each impact is twice as hard; (2) because
the molecules are moving twice as fast, they also take
less time to cross from one side of the flask to the
other, so the collisions occur twice as frequently. The
result is that the pressure is quadrupled:

P → 4P

Based on these arguments, we conclude that in gen-
eral, the pressure of a gas maintained at constant
volume is proportional to its absolute temperature:

P ∝ T

In this lab, you’ll measure the volume of a sample
of air at temperatures between about −70 and 150
degrees C, and determine where absolute zero lies by
extrapolating to the temperature at which it would
have had zero pressure.

Because absolute zero is very far below room tem-
perature, this is a long extrapolation. Extrapolating
a long way like this tends to be inaccurate unless
you can get data covering a large range, so that the
slope is well determined. For this reason, we want
to get a set of temperatures that goes as high and
as low as possible.

Observations
• Hot mineral oil Thoroughly dry the beaker in

which you’ll heat the mineral oil; if there are
drops of water mixed into the oil, the oil will
spatter. Measure and plan the volume of oil
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you will use. If you use too little, it won’t cover
the whole Erlenmeyer flask that holds the sam-
ple of air. If you use too much, it will overflow
and make a nasty mess when you dunk the
flask in it. Start heating the mineral oil. Keep
an eye on the temperature. You should heat
it up to about 150 ◦C; above that, it starts to
smoke.

While you’re waiting for the mineral oil to heat up,
plug the temperature and pressure sensors into CH1
and CH2 on the LabPro interface. Use the Logger
Pro software to view the temperature readout. Put
the stopper in the Erlenmyer flask in order to make
a sealed sample of air. There is an extra port on the
stopper with a blue stopcock; make sure the stop-
cock is closed, so that the sample is sealed. Connect
the flask to the pressure sensor using the latex tub-
ing. The temperature probe goes in the liquid, not
the air.

The whole lab is predicated on the ability to main-
tain the same sample of gas at a range of tempera-
tures. Therefore if you have a leak, you have to do
the whole lab over. Make sure the bayonet connec-
tor with the stopcock is firmly shoved into the hole
in the rubber stopper. If you notice that the pres-
sure doesn’t change as the temperature changes, it
means you have a leak.

A practical difficulty in this lab is that if the flask is
initially sealed, and then heated to a higher temper-
ature, the stopper tends to pop out due to the higher
pressure. To keep this from happening, we want to
start off with a sample of air that is hot and at at-
mospheric pressure; then all the other pressures will
be at lower than atmospheric pressure, which will
tend to suck the stopper down into the flask rather
than popping it out. To accomplish this, take the
oil off the burner, open the stopcock on the flask,
immerse the flask in the oil, wait a little bit for the
air inside the flask to heat up, and then close the
stopcock again. The Erlenmyer flask wants to bob
up out of the oil, so use some tape to hold it down.
Take pressure and temperature data.

Although it’s undesirable that the small amount of
air in the tubing won’t be at exactly the same tem-
perature as the rest of the air, we can’t avoid this,
because the mineral oil is hot enough to melt the
tubing.

When you’re done with the mineral oil, wash the
beaker with soap and water.

We’ll next do a series of measurements at lower tem-
peratures:

• Room-temperature tap water Make sure that
the pressure drops by about a third when you
come down to this temperature. If it doesn’t,
you probably have an air leak.

• Ice-cold alcohol

• Acetone/dry ice slurry: Use the hammer to
knock off a piece of dry ice. Remove the piece
using the tongs, stick it in a baggie, and crush
it up some more with a hammer. Add the dry
ice to the acetone (nail polish remover) slowly;
if you do it rapidly, it can fizz violently. Mix
the dry ice and acetone to make a slush. Ace-
tone is flammable, so avoid creating any sparks
or flames. This mixture cannot be dumped
down the drain when you’re done; keep it so
that it can be disposed of properly. To reduce
the amount of waste disposal, you can reuse
another group’s slurry. You should be able to
get the temperature down to about−60 to−80
celsius. If you only get to −20, you’re doing
something wrong.

Analysis
Graph the temperature and pressure against each
other. Does the graph appear to be linear? If so, ex-
trapolate to find the temperature at which the pres-
sure would be zero.

Error analysis and propagation of errors are dis-
cussed in Appendices 2 and 3, which you should read
if you haven’t had a previous lab course that did
these topics.

If your data are nice and linear, then your main
source of error will be random errors, and you should
then determine error bars for your value of absolute
zero using the techniques discussed in Appendix 4.
The appendix discusses finding the slope of a line, al-
though in this lab it’s actually the x- or y-intercept
that you want; the technique is analogous, however.
The easiest way to estimate the error bars on the
points is to use the typical amount of scatter of the
points about the best-fit line. For example, if the
systematic trend of the data is linear, but the points
generally lie an average of about 5 ◦C away from the
line, then the error bars are approximately 5 ◦C.

Compare your result with the accepted value and
give a probabilistic interpretation as in the example
on p. 53.
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8 Conservation of Energy

Apparatus
air track
cart
springs (steel, 1.5 cm diameter)
photogate
computer
aluminum rods, ∼ 45 cm
spirit levels
air blowers
spring scales
string
balances
scissors

Goal
Test conservation of energy for an object oscillating
around an equilibrium position.

This could be a vibration of the sun, a water balloon, or a
nucleus.

Introduction
One of the most impressive aspects of the physical
world is the apparent permanence of so many of its
parts. Objects such as the sun or rocks on earth
have remained unchanged for billions of years, so it
might seem that they are in perfect equilibrium, with
zero net force on each part of the whole. In reality,
the atoms in a rock do not sit perfectly still at an
equilibrium point — they are constantly in vibration
about their equilibrium positions. The unchanging
oblate shape of the sun is also an illusion. The sun
is continually vibrating like a bell or a jiggling water
balloon, as shown in the (exaggerated) figure. The
nuclei of atoms also jiggle spontaneously like little
water balloons. The fact that these types of motion
continue indefinitely without dying out or building

up relates to conservation of energy, which forbids
them to get bigger or smaller without transferring
energy in or out.

Our model of this type of oscillation about equilib-
rium will be the motion of a cart on an air track be-
tween two springs. The sum of the forces exerted by
the two springs should at least approximately obey
Hooke’s law,

F = −kx ,

where the equilibrium point is at x = 0. The nega-
tive sign means that if the object is displaced in the
positive direction, the force tends to bring it back
in the negative direction, towards equilibrium, and
vice versa. Of course, there are no actual springs
involved in the sun or between a rock’s atoms, but
we can still learn about this type of situation in a
lab experiment with a mass attached to a spring. In
this lab, you will study how the changing velocity of
the object, in this case a cart on an air track, can
be understood using conservation of energy. Recall
that for a constant force, the potential energy is sim-
ply −Fx, but for a force that is different at different
locations, the potential energy is minus the area un-
der the curve on a graph of F vs. x. In the present
case, the area formed is a triangle with base = x,
height = kx, and

area =
1

2
base · height

= −1

2
kx2

(counted as negative area because it lies below the
x axis), so the potential energy is

PE =
1

2
kx2 .

Conservation of energy, PE + KE = constant, re-
quires the constancy of

1

2
kx2 +

1

2
mv2 = Etotal .
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Preliminary Observations
You should do both of the following methods of de-
termining the spring constant.

Determining the spring constant: method 1

Pull the cart to the side with a spring scale, and
determine the spring constant, which is defined as
minus the slope of the F versus x graph. Don’t de-
tach either spring; just measure the whole system to
find the combined spring constant of the two springs,
k. Since you’ll only use method 1 as a rough check
against the more precise method 2, it is a waste of
time to take more than two data points, and you can
use these points to find the slope without actually
having to make a graph.

Determining the spring constant: method 2

The second technique for determining k is to raise
one end up and observe how far the cart’s equilib-
rium is displaced. This method is more accurate
than method 1, but your k value from method 1 is
still useful as a check.

You can determine the angle θ to which the track
has been raised by the same trig you used in lab 5.
At this angle, the component mg sin θ of the gravi-
tational force that is parallel to the track cancels out
the force kx from the springs. Since you know m, g,
θ, and x, you can determine k.

The main limitation on the precision of this measure-
ment is that the displacement x is fairly small. To
maximize your precision, raise the track to as high
an angle as is practical. A good method is to prop
it up with the aluminum rod, using the spirit level
to make sure the rod is vertical.

Observations
The technique is essentially the same as in lab 5,
which you will want to review.

Before you start taking actual data, check whether
you have excessive friction by letting the computer
record data while the cart vibrates back and forth
a few times through the photogate. If the air track
is working right, all the time measurements should
be nearly the same, but if the data show the cart
slowing down a lot from one vibration to the next,
then you have a problem with friction. A drop in
velocity of about 1% over a half-cycle is reasonable.

Measure the velocity of the cart for many different
values of x by moving the photogate to various po-
sitions. Make sure you always release the cart from
rest at the same point, and when you are initially
choosing this release point, make sure that it is not
so far from the center that the springs are completely
bunched up or dragging on the track. Don’t forget
that the x you use in the potential energy should
be the distance from the equilibrium position to the
position where the vane is centered on the photogate
— if you don’t think about it carefully, it’s easy to
make a mistake in x equal to half the width of the
vane. See lab 5.

Self-Check
Calculate the energies at the extremes, where PE =
0 and KE = 0, and see whether the energy is staying
roughly constant. You should do this self-check as
early as possible in the lab, so that you can make
sure you’re not spending lots of time collecting data
that turn out to be bogus.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

P1 Find the value of x from the figure below. (I’ve
made the centimeter scale unrealistic for readability
— the real track is more than a meter long, not 14
centimeters.)

P2 In order to do the self-check, where would you
have to put the photogate?

P3 Plan how you will estimate the random errors
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on your raw data. (Random errors here would refer
to something that would cause independent errors
that could be up or down for any individual data
point — not things like the measurement of k, which
you do once for the whole experiment.)

Analysis
Graph PE, KE, and the total energy as functions
of x, with error bars (see appendices 2, 3, and 4), all
overlaid on the same plot. Make sure to include the
points with KE = 0 and PE = 0.

As a shortcut in your error analysis, it’s okay if you
do the error analysis for your most typical data-
point, in which the energy is split roughly 50-50 be-
tween PE and KE, and then assume that the same
error bars on PE, KE, and total energy apply to all
the other points on the graph as well.

As sources of error, you have certain things, such as
the spring constant k, that you determine once for
the entire lab. These are more like systematic errors
rather than random errors. The error bars you draw
on the graph are meant to represent random errors,
i.e., errors that could cause random scatter in the
points. Therefore you should not include systematic
errors in these error bars.

Discuss whether you think conservation of energy
has been verified. See the examples in appendix 4 re
how to statistically interpret this type of comparison
of data with a curve on a graph.
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9 Conservation of Momentum

Apparatus
computer with Logger Pro software
track
2 carts with magnets and mounting brackets for force
sensors
1-kg weight
500 g slotted weight (in lab benches in 415)
masking tape
2 force sensors with rubber corks

The format of this lab is informal. You can write
your answers in the blanks in the lab manual for
parts A-G, and you don’t need to write up anything
at the end. I’ll just discuss the physics verbally with
your group as a whole.

Qualitative Observations
Level the track.

First you’re going to observe some collisions between
two carts and see how conservation of momentum
plays out. If you really wanted to take numerical
data, it would be a hassle, because momentum de-
pends on mass and velocity, and there would be four
different velocity numbers you’d have to measure:
cart 1 before the collision, cart 1 after the collision,
cart 2 before, and cart 2 after. To avoid all this com-
plication, the first part of the lab will use only visual
observations.

Try gently pressing the two carts together on the
track. As they come close to each other, you’ll feel
them repelling each other! That’s because they have
magnets built into the ends. The magnets act like
perfect springs. For instance, if you hold one cart
firmly in place and let the other one roll at it, the
incoming cart will bounce back at almost exactly the
same speed. It’s like a perfect superball.

A Equal masses, target at rest, elastic collision

Roll one cart toward the other. The target cart is
initially at rest. Don’t hold the target cart in place.
Conservation of momentum reads like this,

M × + M ×
=? M × + M × ,

where the two blanks on the left stand for the two
carts’ velocities before the collision, and the two

blanks on the right are for their velocities after the
collision. All conservation laws work like this: the
total amount of something remains the same. You
don’t have any real numbers, but just from eye-
balling the collision, what seems to have happened?
Let’s just arbitrarily say that the mass of a cart is
one unit, so that wherever it says “M x” in the equa-
tion, you’re just multiplying by one. You also don’t
have any numerical values for the velocities, but sup-
pose we say that the initial velocity of the incoming
cart is one unit. Does it look like conservation of
momentum was satisfied?

B Mirror symmetry

Now reenact the collision from part A, but do every-
thing as a mirror image. The roles of the target cart
and incoming cart are reversed, and the direction of
motion is also reversed.

M × + M ×
=? M × + M × ,

What happens now? Note that mathematically, we
use positive and negative signs to indicate the direc-
tion of a velocity in one dimension.

C An explosion

Now start with the carts held together, with their
magnets repelling. As soon as you release them,
they’ll break contact and fly apart due to the re-
pulsion of the magnets.

M × + M ×
=? M × + M × ,

Does momentum appear to have been conserved?

D Head-on collision

Now try a collision in which the two carts head to-
wards each other at equal speeds (meaning that one
cart’s initial velocity is positive, while the other’s is
negative).

M × + M ×
=? M × + M × ,

E Sticking

Arrange a collision in which the carts will stick to-
gether rather than rebounding. You can do this by
letting the velcro ends hit each other instead of the
magnet ends. Make a collision in which the target is
initially stationary.
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M × + M ×
=? M × + M × ,

The collision is no longer perfectly springy. Did it
seem to matter, or was conservation of momentum
still valid?

F Hitting the end of the track

One end of the track has magnets in it. Take one
cart off the track entirely, and let the other cart roll
all the way to the end of the track, where it will
experience a repulsion from the fixed magnets built
into the track. Was momentum conserved? Discuss
this with your instructor.

G Unequal masses

Now put a one kilogram mass on one of the carts,
but leave the other cart the way it was. Attach the
mass to it securely using masking tape. A bare cart
has a mass of half a kilogram, so you’ve now tripled
the mass of one cart. In terms of our silly (but con-
venient) mass units, we now have masses of one unit
and three units for the two carts. Make the triple-
mass cart hit the initially stationary one-mass-unit
cart.

3M × + M ×
=? 3M × + M × ,

These velocities are harder to estimate by eye, but if
you estimate numbers roughly, does it seem possible
that momentum was conserved?

Quantitative Observations
Now we’re going to explore the reasons why momen-
tum always seems to be conserved. Parts H and I
will be demonstrated by the instructor for the whole
class at once.

Attach the force sensors to the carts, and put on the
rubber stoppers. Make sure that the rubber stoppers
are positioned sufficiently far out from the body of
the cart so that they will not rub against the edge
of the cart. Put the switch on the sensor in the +10
N position. Plug the sensors into the CH1 and CH2
ports on the interface box, and plug the interface box
into the Windows computer. Start up the Logger
Pro software (version 3), and do File>Open>Probes
and Sensors>Force Sensors>Dual Range Forrce>2-
10 N Dual Range. Go to Experiment>Data Collec-
tion, and set Sampling rate to 250 samples/s.

Tell the computer to zero the sensors. Try collecting
data and pushing and pulling on the rubber stopper.
You should get a graph showing how the force went

up and down over time. The sensor uses negative
numbers (bottom half of the graph) for forces that
squish the sensor, and positive numbers (top half)
for forces that stretch it. Try both sensors, and make
sure you understand what the red and blue traces on
the graph are showing you.

H. Put the extra 1-kilogram weight on one of the
carts. Put it on the track by itself, without the other
cart. Try accelerating it from rest with a gentle,
steady force from your finger. You’ll want to set the
collection time to a longer period than the default.
Position the track so that you can walk all the way
along its length (not diagonally across the bench).

What does the graph on the computer look like?

I. Now repeat H, but use a more rapid acceleration
to bring the cart up to the same momentum. Sketch
a comparison of the graphs from parts H and I.

Discuss with your instructor how this relates to mo-
mentum.

J. You are now going to reenact collision A, but don’t
do it yet! You’ll let the carts’ rubber corks bump into
each other, and record the forces on the sensors. The
carts will have equal mass, and both forces will be
recorded simultaneously. Before you do it, predict
what you think the graphs will look like, and show
your sketch to your instructor.

Switch both sensors to the +50 N position, and open
the corresponding file on the computer.

Zero the sensors, then check the calibration by bal-
ancing a 500 g slotted weight on top, taking data,
zooming in, and putting the mouse cursor on the
graph. You will probably find that the absolute cal-
ibration of the sensor is very poor when it’s used on
the 50 N scale; keep this in mind when interpreting
your results from the collision.

Now try it. To zoom in on the relevant part of the
graph, use the mouse to draw a box, and then click
on the magnifying glass icon. You will notice by
eye that the motion after the collision is a tiny bit
different than it was with the magnets, but it’s still
pretty similar. Looking at the graphs, how do you
explain the fact that one cart lost exactly as much
momentum as the other one gained? Discuss this
with your instructor before going on.

K. Now imagine – but don’t do it yet – that you
are going to reenact part G, where you used unequal
masses. Sketch your prediction for the two graphs,
and show your sketch to your instructor before you
go on.
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Now try it, and discuss the results with your instruc-
tor.
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10 Torque

Apparatus
meter stick with holes drilled in it . . . . . . . . 1/group
spring scales, calibrated in newtons
slotted weights (in lab benches in 415)
holder for slotted weights
string
protractors
Ohaus balances

Goal
Test whether the total force and torque on an object
at rest both equal zero.

Introduction
It is not enough for a boat not to sink. It also must
not capsize. This is an example of a general fact
about physics, which is also well known to people
who overindulge in alcohol: if an object is to be in
a stable equilibrium at rest, it must not only have
zero net force on it, to keep from picking up momen-
tum, but also zero net torque, to keep from acquiring
angular momentum.

Observations
Weigh your meter stick before you do anything else;
they don’t all weigh the same amount.

Construct a setup like the one shown above. Avoid
any symmetry in your arrangement. There are four

forces acting on the meter stick:

FH = the weight hanging underneath

FM = Earth’s gravity on the meter stick itself

FL = tension in the string on the left

FR = tension in the string on the right

Each of these forces also produces a torque.

In order to determine whether the total force is zero,
you will need enough raw data so that for each torque
you can extract (1) the magnitude of the force vec-
tor, and (2) the direction of the force vector. In
order to add up all the torques, you will have to
choose an axis of rotation, and collect enough raw
data to be able to determine for each force (3) the
distance from the axis to the point at which the force
is applied to the ruler, and (4) the angle between the
force vector and the line connecting the axis with the
point where the force is applied. Note that the me-
ter stick’s own weight can be thought of as being
applied at its center of mass.

The meter stick has holes drilled in it that you can
use to attach the strings. You can make your anal-
ysis simpler by tying the knots as shown below, so
that all the forces act at points along the center-line
of the stick.

You have a selection of spring scales, so use the right
one for the job — don’t use a 20 N scale to measure
0.8 newtons, because it will not be possible to read
it accurately. Optimize your precision by choosing
conditions that come as close as possible to maxing
out the scales. For each spring scale, hang a known
weight from it, and adjust the calibration tab so that

36 Lab 10 Torque



the scale gives the correct result. If you need to swap
in a new spring scale, don’t forget to calibrate it.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

P1 You have complete freedom in defining what
point is to be considered the axis of rotation — if
one choice of axis causes the total torque to be zero,
then any other choice of axis will also cause the to-
tal torque to be zero. It is possible to simplify the
analysis by choosing the axis so that one of the four
torques is zero. Plan how you will do this.

P2 All the torques will be tending to cause rota-
tion in the same plane. You can therefore use plus
and minus signs to represent clockwise and counter-
clockwise torques. Choose which one you’ll call pos-
itive. Using your choice of axis, which of the four
torques, τH , τM , τL, and τR, will be negative, which
will be positive, and which will be zero?

Analysis
Determine the total force and total torque on the
meter stick. For the forces, I think a graphical cal-
culation will be easier than an analytic one.

Finally, repeat your calculation of the total torque
using a different point as your axis. Although you’re
normally expected to do your analysis completely
independently, for this lab it’s okay if you find the
total torque for one choice of axis, and your lab part-
ners do the calculation for their own choices. Present
both results in your own abstract.

Error analysis is not required. For extra credit, you
can do error analysis for your total torque.
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11 The Moment of Inertia

Apparatus
rotating platform w/ heavy disc and ring . 1/group
50g weight with hook . . . . . . . . . . . . . . . . . . . . . 1/group
calipers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1/group
digital balance, 4kg max . . . . . . . . . . . . . . . . . . . 1/class
digital balance, 6kg max . . . . . . . . . . . . . . . . . . . 1/class
right-angle clamps and rods

Goal
Measure moments of inertia using kinematics.

Introduction
The figure shows a method for determining an un-
known moment of inertia. A rotating platform of
radius R has a string wrapped around it. The string
is threaded over a pulley and down to a hanging
weight of mass m. The mass is released from rest,
and its acceleration a is measured. From these data,
the total moment of inertia of the platform plus the
terrier can be determined (prelab question P1 or a
homework problem).

Since we were unable to obtain a set of standard
terriers from our suppliers, we will use a disk and a
ring as unknowns. The moments of inertia of each
unknown can be found by determining the total mo-
ment of inertia and then subtracting the moment of
inertia of the bare platform.

Setup
Place the rotating platform on the table. Have the
string from the rotating platform pass over the pul-
ley when connecting the hanging weight. Make sure
the height of the top of the pulley is about level with

the middle of the rotating platform drum, or else the
string will tend to move off of the drum.

Weigh your hanging mass (±0.1g), heavy solid disc,
and heavy ring using the digital balances. The heavy
items are about 5 kg each, and so if you don’t have a
digital balance that can weigh such massive objects,
you might have to get creative. One suggestion is to
weigh a heavy item on two scales (at the same time)
and add the readings from the two scales.

Observations
A Measuring the moment of inertia of the plat-

form

By measuring the time it takes for the mass to fall,
calculate the moment of inertia of the rotating plat-
form in kg ·m2. Include error bars in your calcula-
tion, which are probably dominated by your uncer-
tainty in the time it takes the mass to fall.

B Measuring the moments of inertia of the disk
and ring

Using the mass and radii of the two heavy objects,
calculate their moments of inertia. The ring has a fi-
nite thickness, but it’s a good approximation to take
the average of the inner radius and the outer radius.
There is no need to calculate an error for these, since
the error is dominated by systematic errors (the dif-
ference in these objects’ shapes relative to the ideal
case).

Your calculated values are predictions that you will
test by measuring the moments of inertia using the
expression for I in the prelab. Repeat part A, but
this time placing the heavy ring and the heavy disc
separately on the rotating platform. Measure each
moment of inertia with error. Keep in mind that
these values are IRP + Idisc and IRP + Iring, so you’ll
have to subtract off IRP to find the moment of inertia
of each heavy object by itself.

Do your results agree with your calculated values?

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
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my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

P1 For the technique described for parts A and B,
find the total moment of inertia I of the platform
plus the object sitting on top of it, in terms of the
acceleration a of the hanging mass, its mass m, and
the radius r of the cylinder about which the string
is wound. If you were assigned this calculation as a
homework problem, skip this prelab question.

P2 You will not actually measure the acceleration
a of the falling weight directly, but rather the dis-
tance h it travels in a time t. Find the acceleration
in terms of the raw data.

Analysis
Compare the moments of inertia with theory, includ-
ing propagation of errors. I think the main source
of error is R, which is ambiguous due to winding
of the string on top of itself. For the disk, there
is the complication that there is an extra hub near
the center, and a drilled hole. I think it’s a good
enough approximation to treat the whole thing as
a simple disk, since the systematic error incurred is
small compared to the rather large random error due
to R.
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12 Torque in Three Dimensions

Apparatus
metal hoop (baby buggy wheel) . . . . . . . . . . .1/group
posts with clamps . . . . . . . . . . . . . . . . . . . . . . . . 3/group
spring scales
vertical stand for use with plumb bob . . . . .1/group
meter stick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3/group
string
plumb bob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
butcher paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
protractors
compass
scissors

Goal
Test the hypothesis that the total torque and total
force on an object are zero, for a system that cannot
be analyzed within a plane.

Observations
The basic idea here is to reenact lab 10 in three
dimensions, so that the r and F vectors are not con-
fined to a plane. To make things simple, you’ll use
a circular hoop as your object. By taking its center
as the axis, and suspending it from three strings at-
tached at its circumference, you can make the mag-
nitudes of the r vectors all the same. It’s not easy
to level the hop with a spirit level, because placing
the spirit level on it tends to make it sag; instead,
just eyeball it carefully. If you do this well, all the
r vectors lie in the horizontal plane. (This requires
adjusting the knots so that the three forces are all
applied at points in the mid-plane of the wheel.) The
three strings, however, should not be vertical; they
should point up and out at random angles. The
whole arrangement should not have any symmetry.
There will be three force vectors for the three strings,
plus a downward force vector due to gravity.

The figure on the following page shows some knots
that are handy. The overhand on a bight is a secure
knot that can be used to attach the string to a spring
scale. The square knot is a good one for tying on to
the wheel, since it can be tightened in order to put
the knot in the mid-plane. Make sure you make a
square rather than a granny, which tends to slip.
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You can use whatever measuring techniques you need
in order to completely determine all the r and F vec-
tors in three dimensions, but the general approach
that seemed to work well for me was to lay a large
sheet of butcher paper on the tabletop underneath
the apparatus, and project points on the apparatus
down onto the paper using the plumb bob. For con-
venience of measurement, make sure each string is a
single strand (not an oval loop), and that it’s long
enough so that its projection down onto the hori-
zontal plane is fairly long, and can have its direction
measured accurately. Note that the strings’ horizon-
tal projections will not necessarily pass through the
center of the hoop; that’s okay, and in fact there’s
no easy way to avoid it.

To locate the projection of the ring, you can mark
points on its circumference, then at the end of the lab
cut a circle of the right size out of a piece of paper,
lay it on the butcher paper, and trace its outline.
It’s not possible to trace the hoop itself, because it’s
a baby buggy wheel, and its axle prevents it from
lying flat. The diameter is 22.1 cm, and you can
construct the circle using a compass.

I found it convenient to work in spherical coordi-
nates. Spherical coordinates (r, θ,φ), illustrated in
the figure above,1 are a generalization of polar co-
ordinates to three dimensions. The angle φ is like
longitude on the earth’s surface (or minus the lon-
gitude, actually, since it is conventionally measured
counterclockwise from the x axis). The angle θ cor-
reponds to 90 degrees minus the latitude; it equals
zero for a point on the z axis directly above the ori-
gin, 180 degrees for one directly below.

The r vectors of the points at which the strings ap-

1Wikimedia Commons user Andeggs, public domain

ply their forces have r equal to the radius of the
hoop, and θ = 90 ◦. For the force vectors, you’ll
have (F , θF ,φF ), where F is the magnitude of the
force in newtons, and, e.g., θF = 180 ◦ for the force
of gravity, and θF < 90 ◦ for the forces of the strings.

Self-Check
Make sure that the total force comes out close to
zero.

Analysis
To make the error analysis manageable, you’ll want
to set up your whole analysis as either a spreadsheet
or a computer program.

Convert all four force vectors and all four r vectors
into Cartesian coordinates. Find the total force by
vector addition. Compute the four torque vectors
using the vector cross product, and find the total
torque by vector addition. Turn in a copy of your
python code and its output with your writeup.

Using a computer program for anal-
ysis
If you have coding skills, I think it’s much easier to
do the analysis for this lab, and especially the error
analysis, by writing a computer program. A possible
convenient way to do this is to write code in a web
browser, in your favorite language, at the web site
ideone.com.

If you haven’t coded before but are interested in
learning some basic coding for this lab, you can try
the tutorial in the back of the textbook on the com-
puter language Python. The way I would then start
would be to write the following two python func-
tions:

cross_x(ax,ay,az,bx,by,bz) — take the compo-
nents of vectors A and B as input and calculates the
x component of their cross product as output.

cart_x(r,theta,phi) — find the x component of
a vector given in spherical coordinates. To get the
trig functions to work, you need to put this line at
the top of your program:

from math import sin,cos

Include a conversion from degrees to radians, since
your raw data will all be in degrees, but the python
functions are defined in radians. Test your function
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on the example given in P2.

Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

P1 Given r = 2.0 cm, θ = 37 degrees, and φ = 16
degrees in spherical coordinates, find x, y, and z in
Cartesian coordinates. Answer: x = 1.2 cm, y = 0.3
cm, z = 1.6 cm.
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13 Resonance

Apparatus
vibrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
stopwatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/group
multimeter (in lab bench) . . . . . . . . . . . . . . . . 1/group
banana plug cables
Leybold 521 545 17-volt DC power supplies (or BK
Precision 1505)
24 V AC power supplies
spray lubricant

Goals
Observe the phenomenon of resonance.

Investigate how the width of a resonance de-
pends on the amount of damping.

Introduction
To break a wine glass, an opera singer has to sing
the right note. To hear a radio signal, you have to
be tuned to the right frequency. These are examples
of the phenomenon of resonance: a vibrating system
will respond most strongly to a force that varies with
a particular frequency.

Simplified mechanical drawing of the vibrator, front view.

Apparatus
In this lab you will investigate the phenomenon of
resonance using the apparatus shown in the figure.
If the motor is stopped so that the arms are locked in

Electrical setup, top view.

place, the metal disk can still swing clockwise and
counterclockwise because it is attached to the up-
right rod with a flexible spiral spring. A push on the
disk will result in vibrations that persist for quite
a while before the internal friction in the spring re-
duces their amplitude to an imperceptible level. This
would be an example of a free vibration, in which
energy is steadily lost in the form of heat, but no
external force pumps in energy to replace it.

Suppose instead that you initially stop the disk, but
then turn on the electric motor. There is no rigid
mechanical link to the disk, since the motor and disk
are only connected through the very flexible spiral
spring. But the motor will gently tighten and loosen
the spring, resulting in the gradual building up of a
vibration in the disk.

The pointer on the disk allows us to measure the
amplitude of the vibrations using an angular scale
(not shown). In general, we expect the energy of
a vibration to be related to the amplitude by the
approximate proportionality E ∝ A2, and this ap-
proximation is a pretty good one for this lab.1

1For simple harmonic motion, the energy goes back and
forth between 100% potential and 100% kinetic. Then the
maximum potential energy is exactly proportional to A2, and
therefore so is the kinetic energy. These statements are not all
true for the driven motion, but they are all good approxima-
tions when the driving frequency is not too far from resonance.
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Observations
A Period of Free Vibrations

Start without any of the electrical stuff hooked up.
Twist the disk to one side, release it, and determine
its period of vibration. (Both here and at points
later in the lab, you can improve your accuracy by
timing ten periods and dividing the result by ten.)
This is the natural period of the vibrations, i.e., the
period with which they occur in the absence of any
driving force.

B Damping

Note the coils of wire at the bottom of the disk.
These are electromagnets. Their purpose is not to
attract the disk magnetically (in fact the disk is
made of a nonmagnetic metal) but rather to increase
the amount of damping in the system. Whenever a
metal is moved through a magnetic field, the elec-
trons in the metal are made to swirl around. As
they eddy like this, they undergo random collisions
with atoms, causing the atoms to vibrate. Vibration
of atoms is heat, so where did this heat energy come
from ultimately? In our system, the only source of
energy is the energy of the vibrating disk. The net
effect is thus to suck energy out of the vibration and
convert it into heat. Although this magnetic and
electrical effect is entirely different from mechanical
friction, the result is the same. Creating damping in
this manner has the advantage that it can be made
stronger or weaker simply by increasing or decreas-
ing the strength of the magnetic field.

Turn off all the electrical equipment and leave it un-
plugged from the wall. Connect the circuit shown
in the top left of the electrical diagram, consisting
of a power supply to run the electromagnet. You do
not yet need the power supply for driving the mo-
tor. The power supply has a built-in meter labeled
“A,” for “Amperes,” the metric unit of electrical cur-
rent. This will tell you how much electrical current
is flowing through the electromagnet, giving you a
numerical measure of how strong your damping is.
Although this does not directly tell you the amount
of damping force in units of newtons (the force de-
pends on velocity), the force is proportional to the
current.

For this part of the lab, you do not yet need any of
the electrical setup for the motor (right-hand side of
the figure).

Once you have everything hooked up, check with
your instructor before plugging things in and turn-
ing them on. If you do the setup wrong, you could

blow a fuse, which is no big deal, but a more serious
goof would be to put too much current through the
electromagnet, which could burn it up, permanently
ruining it.

The Q of an oscillator is defined as the number of os-
cillations required for damping to reduce the energy
of the vibrations by a factor of 535 (a definition orig-
inating from the quantity e2π). As planned in your
prelab, measure the Q of the system with the electro-
magnet turned off, then with a low current through
the electromagnet, and then a higher current. There
are differences among the oscillators. To compensate
for this, the currents you should use should be based
on which oscillator you have. These are designed to
give Q values of about 8 and 15; if your actual Q’s
are much lower, use the spray lubricant to lubricate
the bearing.

low current high current
group oscillator (high Q) (low Q)
1 1 180 mA 350 mA
2 2 300 490
3 3C 290 430
4 4 330 500
5 5B 400 560
6 6B 430 610
7 7B 490 610

You will be using these two current values through-
out the lab. The Leybold power supply has separate
knobs that set both a maximum electrical current
and a maximum voltage. The easiest way to get the
desired current is to first turn the voltage knob to
zero, then set the current (“A”) knob to 100%, and
then turn up the voltage. The two currents listed
are intended to give Q values of about 15 and 8. If
you find that your Q’s are much lower than this, ask
your instructor for help lubricating the bearing.

For parts B and C, you do not yet need the multi-
meter used for measuring the speed of the motor.

C Frequency of Driven Vibration

Now connect the 24 V AC power supply to the mo-
tor. The motor has coarse (0 to 100) and fine (-6
to +6) adjustment knobs. These knobs are not cali-
brated in Hz, and their readings don’t even correlate
linearly with frequency, so to measure the frequency
of the motor you need to use the stopwatch.

Set the damping current to the higher of the two
values. Turn on the motor and drive the system at a
frequency very different from the oscillator’s natural
frequency. You will notice that it takes a certain
amount of time, perhaps a minute or two, for the
system to settle into a steady pattern of vibration.
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This is called the steady-state response to the driving
force of the motor.

Does the system respond by vibrating at its natural
frequency, at the same frequency as the motor, or at
some frequency in between?

D Resonance

For parts D and E, you will observe the response
of the oscillator as a function of driving frequency
and construct a graph with the square of the ampli-
tude on the y axis and the frequency on the x axis.
The reason for using the square of the amplitude is
that part E is about the full width at half maximum
(FWHM), and the FWHM is measured between the
two points where the energy of the steady-state vi-
bration equals half its maximum value. Energy is
proportional to the square of the amplitude.

The purpose of part D is to determine at what fre-
quency you obtain the strongest response.

We want to see how the results of parts D and E
depend on damping, so we want graphs for both Q
values. To make this part less time-consuming, you
will only do the low-Q graph. A high-Q graph is
given below.

High-Q graph, taken by B. Crowell with oscillator #3, nat-
ural frequency=0.645 Hz.

When changing from one frequency to another, you
have to allow time for the vibrator to reach its steady
state. To make it easier to tell when the steady state
is happening, it helps if you stop the vibration by
hand after changing the frequency; otherwise you
can get complicated patterns of motion in which the
exponentially decaying motion left over from the old
frequency happens on top of the new driven motion.

In order to see what’s going on, you should make the

graph as you go along, and let the spreadsheet pro-
gram plot each point as you type it in (see appendix
4). You need to make the software understand that
you intend it to graph every row that you ever enter
into the spreadsheet, not just the ones that already
exist when you first make the graph. To do this, use
the mouse to select the first hundred rows of the two
columns you’re graphing, including the many blank
cells below the actual data. Then make the graph.
Although normally you’re expected to do your anal-
ysis in this class totally independently, in this lab
it’s OK if you just print out multiple copies of the
graph for your group.

As you’re making your graph, you will see that you
have certain specific places where you need to fill in
data. It can be difficult to “tune in” the desired mo-
tor frequency based on the markings on the knobs.
For this reason, the motor has an electrical output
labeled “Ux,” which gives a numerical indication of
the frequency of the motor. Hook the multimeter
up to it now, and set the rotary knob to a DC volt-
age scale as suggested in the figure, selecting the
most precise scale that doesn’t overload the meter.
Although the readout is not calibrated in Hz, it is
highly reproducible. As you take each data point,
write down the reading on the meter. Then if, for
example, you decide that you need to go back and
get a data-point at a frequency that lies between
two frequencies that you already have, you can dial
in a reading on the meter that lies between the two
previous readings.

E Width of the Resonance

The goal of this part of the lab is to determine the
FWHM , ∆f , of the resonance. Once you’ve located
the peak of the curve in part D, the parts of the
graph you need to fill in for part E are the sides.

F Resonance Strength

Set the motor to the resonant frequency, i.e., the
frequency at which you have found you obtain the
strongest response. Now measure the amplitude of
the vibrations you obtain with each of the two damp-
ing currents. How does the strength of the resonance
depend on damping?

G Phase (optional)

Observe the phase response, δ, by comparing the
motion of the disk with the motion of the pointer
attached to the driving arm. Does δ have the ex-
pected behavior at ω � ωo and for ω � ωo?
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Prelab
The point of the prelab questions is to make sure
you understand what you’re doing, why you’re do-
ing it, and how to avoid some common mistakes. If
you don’t know the answers, make sure to come to
my office hours before lab and get help! Otherwise
you’re just setting yourself up for failure in lab.

P1 Plan how you will determine the Q of your os-
cillator in part B. [Hint: Note that the energy of a
vibration is proportional to the square of the ampli-
tude.]

Analysis
Parts C, D, E, and F are all quantitative comparisons
with theory. In each case, if your abstract doesn’t
give a theoretical number and an experimental num-
ber, you’re doing something wrong. In parts D and
E, you should analyze both your own graph for the
low Q and the one supplied in the lab manual for
the high Q.

47



Appendix 1: Format of Lab Writeups

Lab reports must be three pages or less, not counting
your raw data. The format should be as follows:

Title

Raw data — Keep actual observations separate from
what you later did with them.
These are the results of the measurements you take
down during the lab, hence they come first. Write
your raw data directly in your lab book; don’t write
them on scratch paper and recopy them later. Don’t
use pencil. The point is to separate facts from opin-
ions, observations from inferences.

Procedure — Did you have to create your own
methods for getting some of the raw data?
Do not copy down the procedure from the manual.
In this section, you only need to explain any meth-
ods you had to come up with on your own, or cases
where the methods suggested in the handout didn’t
work and you had to do something different. Don’t
write anything here unless you think I will really care
and want to change how we do the lab in the future.
In most cases this section can be totally blank. Do
not discuss how you did your calculations here, just
how you got your raw data.

Abstract — What did you find out? Why is it im-
portant?
The “abstract” of a scientific paper is a short para-
graph at the top that summarizes the experiment’s
results in a few sentences.

Many of our labs are comparisons of theory and ex-
periment. The abstract for such a lab needs to say
whether you think the experiment was consistent
with theory, or not consistent with theory. If your
results deviated from the ideal equations, don’t be
afraid to say so. After all, this is real life, and many
of the equations we learn are only approximations,
or are only valid in certain circumstances. However,
(1) if you simply mess up, it is your responsibility
to realize it in lab and do it again, right; (2) you
will never get exact agreement with theory, because
measurements are not perfectly exact — the impor-
tant issue is whether your results agree with theory
to roughly within the error bars.

The abstract is not a statement of what you hoped
to find out. It’s a statement of what you did find
out. It’s like the brief statement at the beginning
of a debate: “The U.S. should have free trade with
China.” It’s not this: “In this debate, we will discuss

whether the U.S. should have free trade with China.”

If this is a lab that has just one important numerical
result (or maybe two or three of them), put them
in your abstract, with error bars where appropriate.
There should normally be no more than two to four
numbers here. Do not recapitulate your raw data
here — this is for your final results.

If you’re presenting a final result with error bars,
make sure that the number of significant figures is
consistent with your error bars. For example, if you
write a result as 323.54± 6 m/s, that’s wrong. Your
error bars say that you could be off by 6 in the ones’
place, so the 5 in the tenths’ place and the four in
the hundredths’ place are completely meaningless.

If you’re presenting a number in scientific notation,
with error bars, don’t do it like this

1.234× 10−89 m/s± 3× 10−92 m/s ,

do it like this

(1.234± 0.003)× 10−89 m/s ,

so that we can see easily which digit of the result the
error bars apply to.

Calculations and Reasoning — Convince me of
what you claimed in your abstract.
Often this section consists of nothing more than the
calculations that you started during lab. If those cal-
culations are clear enough to understand, and there
is nothing else of interest to explain, then it is not
necessary to write up a separate narrative of your
analysis here. If you have a long series of similar
calculations, you may just show one as a sample. If
your prelab involved deriving equations that you will
need, repeat them here without the derivation.

In some labs, you will need to go into some detail
here by giving logical arguments to convince me that
the statements you made in the abstract follow log-
ically from your data. Continuing the debate meta-
phor, if your abstract said the U.S. should have free
trade with China, this is the rest of the debate, where
you convince me, based on data and logic, that we
should have free trade.
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Appendix 2: Basic Error Analysis

No measurement is perfectly ex-
act.
One of the most common misconceptions about sci-
ence is that science is “exact.” It is always a strug-
gle to get beginning science students to believe that
no measurement is perfectly correct. They tend to
think that if a measurement is a little off from the
“true” result, it must be because of a mistake — if
a pro had done it, it would have been right on the
mark. Not true!

What scientists can do is to estimate just how far
off they might be. This type of estimate is called
an error bar, and is expressed with the ± symbol,
read “plus or minus.” For instance, if I measure my
dog’s weight to be 52 ± 2 pounds, I am saying that
my best estimate of the weight is 52 pounds, and I
think I could be off by roughly 2 pounds either way.
The term “error bar” comes from the conventional
way of representing this range of uncertainty of a
measurement on a graph, but the term is also used
when no graph is involved.

Some very good scientific work results in measure-
ments that nevertheless have large error bars. For
instance, the best measurement of the age of the uni-
verse is now 15±5 billion years. That may not seem
like wonderful precision, but the people who did the
measurement knew what they were doing. It’s just
that the only available techniques for determining
the age of the universe are inherently poor.

Even when the techniques for measurement are very
precise, there are still error bars. For instance, elec-
trons act like little magnets, and the strength of a
very weak magnet such as an individual electron is
customarily measured in units called Bohr magne-
tons. Even though the magnetic strength of an elec-
tron is one of the most precisely measured quantities
ever, the best experimental value still has error bars:
1.0011596524± 0.0000000002 Bohr magnetons.

There are several reasons why it is important in sci-
entific work to come up with a numerical estimate
of your error bars. If the point of your experiment
is to test whether the result comes out as predicted
by a theory, you know there will always be some
disagreement, even if the theory is absolutely right.
You need to know whether the measurement is rea-
sonably consistent with the theory, or whether the
discrepancy is too great to be explained by the lim-

itations of the measuring devices.

Another important reason for stating results with er-
ror bars is that other people may use your measure-
ment for purposes you could not have anticipated.
If they are to use your result intelligently, they need
to have some idea of how accurate it was.

Error bars are not absolute limits.
Error bars are not absolute limits. The true value
may lie outside the error bars. If I got a better scale I
might find that the dog’s weight is 51.3±0.1 pounds,
inside my original error bars, but it’s also possible
that the better result would be 48.7 ± 0.1 pounds.
Since there’s always some chance of being off by a
somewhat more than your error bars, or even a lot
more than your error bars, there is no point in be-
ing extremely conservative in an effort to make ab-
solutely sure the true value lies within your stated
range. When a scientist states a measurement with
error bars, she is not saying “If the true value is
outside this range, I deserve to be drummed out of
the profession.” If that was the case, then every sci-
entist would give ridiculously inflated error bars to
avoid having her career ended by one fluke out of
hundreds of published results. What scientists are
communicating to each other with error bars is a
typical amount by which they might be off, not an
upper limit.

The important thing is therefore to define error bars
in a standard way, so that different people’s state-
ments can be compared on the same footing. By
convention, it is usually assumed that people esti-
mate their error bars so that about two times out of
three, their range will include the true value (or the
results of a later, more accurate measurement with
an improved technique).

Random and systematic errors.
Suppose you measure the length of a sofa with a
tape measure as well as you can, reading it off to
the nearest millimeter. If you repeat the measure-
ment again, you will get a different answer. (This
is assuming that you don’t allow yourself to be psy-
chologically biased to repeat your previous answer,
and that 1 mm is about the limit of how well you
can see.) If you kept on repeating the measurement,
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you might get a list of values that looked like this:

203.1 cm 203.4 202.8 203.3 203.2
203.4 203.1 202.9 202.9 203.1

Variations of this type are called random errors, be-
cause the result is different every time you do the
measurement.

The effects of random errors can be minimized by av-
eraging together many measurements. Some of the
measurements included in the average are too high,
and some are too low, so the average tends to be
better than any individual measurement. The more
measurements you average in, the more precise the
average is. The average of the above measurements
is 203.1 cm. Averaging together many measurements
cannot completely eliminate the random errors, but
it can reduce them.

On the other hand, what if the tape measure was a
little bit stretched out, so that your measurements
always tended to come out too low by 0.3 cm? That
would be an example of a systematic error. Since
the systematic error is the same every time, aver-
aging didn’t help us to get rid of it. You probably
had no easy way of finding out exactly the amount
of stretching, so you just had to suspect that there
might a systematic error due to stretching of the
tape measure.

Some scientific writers make a distinction between
the terms “accuracy” and “precision.” A precise
measurement is one with small random errors, while
an accurate measurement is one that is actually close
to the true result, having both small random errors
and small systematic errors. Personally, I find the
distinction is made more clearly with the more mem-
orable terms “random error” and “systematic error.”

The ± sign used with error bars normally implies
that random errors are being referred to, since ran-
dom errors could be either positive or negative, whereas
systematic errors would always be in the same direc-
tion.

The goal of error analysis
Very seldom does the final result of an experiment
come directly off of a clock, ruler, gauge or meter.
It is much more common to have raw data consist-
ing of direct measurements, and then calculations
based on the raw data that lead to a final result.
As an example, if you want to measure your car’s
gas mileage, your raw data would be the number of
gallons of gas consumed and the number of miles
you went. You would then do a calculation, dividing

miles by gallons, to get your final result. When you
communicate your result to someone else, they are
completely uninterested in how accurately you mea-
sured the number of miles and how accurately you
measured the gallons. They simply want to know
how accurate your final result was. Was it 22 ± 2
mi/gal, or 22.137± 0.002 mi/gal?

Of course the accuracy of the final result is ulti-
mately based on and limited by the accuracy of your
raw data. If you are off by 0.2 gallons in your mea-
surement of the amount of gasoline, then that amount
of error will have an effect on your final result. We
say that the errors in the raw data “propagate” through
the calculations. When you are requested to do “er-
ror analysis” in a lab writeup, that means that you
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are to use the techniques explained below to deter-
mine the error bars on your final result. There are
two sets of techniques you’ll need to learn:

techniques for finding the accuracy of your raw
data

techniques for using the error bars on your raw
data to infer error bars on your final result

Estimating random errors in raw
data
We now examine three possible techniques for es-
timating random errors in your original measure-
ments, illustrating them with the measurement of
the length of the sofa.

Method #1: Guess

If you’re measuring the length of the sofa with a
metric tape measure, then you can probably make a
reasonable guess as to the precision of your measure-
ments. Since the smallest division on the tape mea-
sure is one millimeter, and one millimeter is also near
the limit of your ability to see, you know you won’t
be doing better than ± 1 mm, or 0.1 cm. Making al-
lowances for errors in getting tape measure straight
and so on, we might estimate our random errors to
be a couple of millimeters.

Guessing is fine sometimes, but there are at least two
ways that it can get you in trouble. One is that stu-
dents sometimes have too much faith in a measuring
device just because it looks fancy. They think that
a digital balance must be perfectly accurate, since
unlike a low-tech balance with sliding weights on it,
it comes up with its result without any involvement
by the user. That is incorrect. No measurement is
perfectly accurate, and if the digital balance only
displays an answer that goes down to tenths of a
gram, then there is no way the random errors are
any smaller than about a tenth of a gram.

Another way to mess up is to try to guess the error
bars on a piece of raw data when you really don’t
have enough information to make an intelligent esti-
mate. For instance, if you are measuring the range
of a rifle, you might shoot it and measure how far
the bullet went to the nearest centimeter, conclud-
ing that your random errors were only ±1 cm. In
reality, however, its range might vary randomly by
fifty meters, depending on all kinds of random fac-
tors you don’t know about. In this type of situation,
you’re better off using some other method of esti-
mating your random errors.

Method #2: Repeated Measurements and the Two-
Thirds Rule

If you take repeated measurements of the same thing,
then the amount of variation among the numbers can
tell you how big the random errors were. This ap-
proach has an advantage over guessing your random
errors, since it automatically takes into account all
the sources of random error, even ones you didn’t
know were present.

Roughly speaking, the measurements of the length
of the sofa were mostly within a few mm of the av-
erage, so that’s about how big the random errors
were. But let’s make sure we are stating our error
bars according to the convention that the true result
will fall within our range of errors about two times
out of three. Of course we don’t know the “true”
result, but if we sort out our list of measurements
in order, we can get a pretty reasonable estimate of
our error bars by taking half the range covered by
the middle two thirds of the list. Sorting out our list
of ten measurements of the sofa, we have

202.8 cm 202.9 202.9 203.1 203.1
203.1 203.2 203.3 203.4 203.4

Two thirds of ten is about 6, and the range covered
by the middle six measurements is 203.3 cm - 202.9
cm, or 0.4 cm. Half that is 0.2 cm, so we’d esti-
mate our error bars as ±0.2 cm. The average of the
measurements is 203.1 cm, so your result would be
stated as 203.1± 0.2 cm.

One common mistake when estimating random er-
rors by repeated measurements is to round off all
your measurements so that they all come out the
same, and then conclude that the error bars were
zero. For instance, if we’d done some overenthu-
siastic rounding of our measurements on the sofa,
rounding them all off to the nearest cm, every single
number on the list would have been 203 cm. That
wouldn’t mean that our random errors were zero!
The same can happen with digital instruments that
automatically round off for you. A digital balance
might give results rounded off to the nearest tenth of
a gram, and you may find that by putting the same
object on the balance again and again, you always
get the same answer. That doesn’t mean it’s per-
fectly precise. Its precision is no better than about
±0.1 g.

Method #3: Repeated Measurements and the Stan-
dard Deviation

The most widely accepted method for measuring er-
ror bars is called the standard deviation. Here’s how
the method works, using the sofa example again.

52 Lab Appendix 2: Basic Error Analysis



(1) Take the average of the measurements.

average = 203.1 cm

(2) Find the difference, or “deviation,” of each mea-
surement from the average.

−0.3 cm −0.2 −0.2 0.0 0.0
0.0 0.1 0.1 0.3 0.3

(3) Take the square of each deviation.

0.09 cm2 0.04 0.04 0.00 0.00
0.00 0.01 0.01 0.09 0.09

(4) Average together all the squared deviations.

average = 0.04 cm2

(5) Take the square root. This is the standard devi-
ation.

standard deviation = 0.2 cm

If we’re using the symbol x for the length of the
couch, then the result for the length of the couch
would be stated as x = 203.1± 0.2 cm, or x = 203.1
cm and σx = 0.2 cm. Since the Greek letter sigma
(σ) is used as a symbol for the standard deviation, a
standard deviation is often referred to as “a sigma.”

Step (3) may seem somewhat mysterious. Why not
just skip it? Well, if you just went straight from
step (2) to step (4), taking a plain old average of
the deviations, you would find that the average is
zero! The positive and negative deviations always
cancel out exactly. Of course, you could just take
absolute values instead of squaring the deviations.
The main advantage of doing it the way I’ve outlined
above are that it is a standard method, so people will
know how you got the answer. (Another advantage
is that the standard deviation as I’ve described it
has certain nice mathematical properties.)

A common mistake when using the standard devi-
ation technique is to take too few measurements.
For instance, someone might take only two measure-
ments of the length of the sofa, and get 203.4 cm
and 203.4 cm. They would then infer a standard de-
viation of zero, which would be unrealistically small
because the two measurements happened to come
out the same.

In the following material, I’ll use the term “stan-
dard deviation” as a synonym for “error bar,” but
that does not imply that you must always use the
standard deviation method rather than the guessing
method or the 2/3 rule.

There is a utility on the class’s web page for calcu-
lating standard deviations.

Probability of deviations
You can see that although 0.2 cm is a good figure
for the typical size of the deviations of the mea-
surements of the length of the sofa from the aver-
age, some of the deviations are bigger and some are
smaller. Experience has shown that the following
probability estimates tend to hold true for how fre-
quently deviations of various sizes occur:

> 1 standard deviation about 1 times out of 3

> 2 standard deviations about 1 time out of
20

> 3 standard deviations about 1 in 500

> 4 standard deviations about 1 in 16,000

> 5 standard deviations about 1 in 1,700,000

The probability of various sizes of deviations, shown
graphically. Areas under the bell curve correspond to
probabilities. For example, the probability that the mea-
surement will deviate from the truth by less than one stan-
dard deviation (±1σ) is about 34 × 2 = 68%, or about 2
out of 3. (J. Kemp, P. Strandmark, Wikipedia.)

Example: How significant?
In 1999, astronomers Webb et al. claimed to have found
evidence that the strength of electrical forces in the an-
cient universe, soon after the big bang, was slightly
weaker than it is today. If correct, this would be the first
example ever discovered in which the laws of physics
changed over time. The difference was very small, 5.7±
1.0 parts per million, but still highly statistically signifi-
cant. Dividing, we get (5.7− 0)/1.0 = 5.7 for the num-
ber of standard deviations by which their measurement
was different from the expected result of zero. Looking
at the table above, we see that if the true value really
was zero, the chances of this happening would be less
than one in a million. In general, five standard devia-
tions (“five sigma”) is considered the gold standard for
statistical significance.

This is an example of how we test a hypothesis sta-
tistically, find a probability, and interpret the probability.
The probability we find is the probability that our results
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would differ this much from the hypothesis, if the hy-
pothesis was true. It’s not the probability that the hy-
pothesis is true or false, nor is it the probability that our
experiment is right or wrong.

However, there is a twist to this story that shows how
statistics always have to be taken with a grain of salt. In
2004, Chand et al. redid the measurement by a more
precise technique, and found that the change was 0.6±
0.6 parts per million. This is only one standard devia-
tion away from the expected value of 0, which should be
interpreted as being statistically consistent with zero. If
you measure something, and you think you know what
the result is supposed to be theoretically, then one stan-
dard deviation is the amount you typically expect to be
off by — that’s why it’s called the “standard” deviation.
Moreover, the Chand result is wildly statistically incon-
sistent with the Webb result (see the example on page
57), which means that one experiment or the other is
a mistake. Most likely Webb at al. underestimated their
random errors, or perhaps there were systematic errors
in their experiment that they didn’t realize were there.

Precision of an average
We decided that the standard deviation of our mea-
surements of the length of the couch was 0.2 cm,
i.e., the precision of each individual measurement
was about 0.2 cm. But I told you that the average,
203.1 cm, was more precise than any individual mea-
surement. How precise is the average? The answer
is that the standard deviation of the average equals

standard deviation of one measurement√
number of measurements

.

(An example on page 56 gives the reasoning that
leads to the square root.) That means that you can
theoretically measure anything to any desired preci-
sion, simply by averaging together enough measure-
ments. In reality, no matter how small you make
your random error, you can’t get rid of systematic er-
rors by averaging, so after a while it becomes point-
less to take any more measurements.
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Appendix 3: Propagation of Errors

Propagation of the error from a
single variable
In the previous appendix we looked at techniques
for estimating the random errors of raw data, but
now we need to know how to evaluate the effects of
those random errors on a final result calculated from
the raw data. For instance, suppose you are given a
cube made of some unknown material, and you are
asked to determine its density. Density is defined
as ρ = m/v (ρ is the Greek letter “rho”), and the
volume of a cube with edges of length b is v = b3, so
the formula

ρ = m/b3

will give you the density if you measure the cube’s
mass and the length of its sides. Suppose you mea-
sure the mass very accurately as m = 1.658±0.003 g,
but you know b = 0.85±0.06 cm with only two digits
of precision. Your best value for ρ is 1.658 g/(0.85 cm)3 =
2.7 g/cm3.

How can you figure out how precise this value for ρ
is? We’ve already made sure not to keep more than
twosignificant figures for ρ, since the less accurate
piece of raw data had only two significant figures.
We expect the last significant figure to be somewhat
uncertain, but we don’t yet know how uncertain. A
simple method for this type of situation is simply to
change the raw data by one sigma, recalculate the
result, and see how much of a change occurred. In
this example, we add 0.06 cm to b for comparison.

b = 0.85 cm gave ρ = 2.7 g/cm3

b = 0.91 cm gives ρ = 2.2 g/cm3

The resulting change in the density was 0.5 g/cm3,
so that is our estimate for how much it could have
been off by:

ρ = 2.7± 0.5 g/cm3 .

Propagation of the error from sev-
eral variables
What about the more general case in which no one
piece of raw data is clearly the main source of error?
For instance, suppose we get a more accurate mea-
surement of the edge of the cube, b = 0.851± 0.001
cm. In percentage terms, the accuracies of m and

b are roughly comparable, so both can cause sig-
nificant errors in the density. The following more
general method can be applied in such cases:

(1) Change one of the raw measurements, say m, by
one standard deviation, and see by how much the
final result, ρ, changes. Use the symbol Qm for the
absolute value of that change.

m = 1.658 g gave ρ = 2.690 g/cm3

m = 1.661 g gives ρ = 2.695 g/cm3

Qm = change in ρ = 0.005 g/cm3

(2) Repeat step (1) for the other raw measurements.

b = 0.851 cm gave ρ = 2.690 g/cm3

b = 0.852 cm gives ρ = 2.681 g/cm3

Qb = change in ρ = 0.009 g/cm3

(3) The error bars on ρ are given by the formula

σρ =
√
Q2
m +Q2

b ,

yielding σρ = 0.01 g/cm3. Intuitively, the idea here
is that if our result could be off by an amount Qm
because of an error in m, and by Qb because of b,
then if the two errors were in the same direction, we
might by off by roughly |Qm| + |Qb|. However, it’s
equally likely that the two errors would be in oppo-
site directions, and at least partially cancel. The ex-
pression

√
Q2
m +Q2

b gives an answer that’s smaller
than Qm+Qb, representing the fact that the cancel-
lation might happen.

The final result is ρ = 2.69± 0.01 g/cm3.

Example: An average
On page 54 I claimed that averaging a bunch of mea-
surements reduces the error bars by the square root of
the number of measurements. We can now see that
this is a special case of propagation of errors.

For example, suppose Alice measures the circumfer-
ence c of a guinea pig’s waist to be 10 cm, Using the
guess method, she estimates that her error bars are
about ±1 cm (worse than the normal normal ∼ 1 mm
error bars for a tape measure, because the guinea pig
was squirming). Bob then measures the same thing,
and gets 12 cm. The average is computed as

c =
A + B

2
,

where A is Alice’s measurement, and B is Bob’s, giving
11 cm. If Alice had been off by one standard devia-
tion (1 cm), it would have changed the average by 0.5
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cm, so we have QA = 0.5 cm, and likewise QB = 0.5
cm. Combining these, we find σc =

√
Q2

A + Q2
B = 0.7

cm, which is simply (1.0 cm)/
√
2. The final result is

c = (11.0 ± 0.7) cm. (This violates the usual rule for
significant figures, which is that the final result should
have no more sig figs than the least precise piece of
data that went into the calculation. That’s okay, be-
cause the sig fig rules are just a quick and dirty way
of doing propagation of errors. We’ve done real propa-
gation of errors in this example, and it turns out that the
error is in the first decimal place, so the 0 in that place
is entitled to hold its head high as a real sig fig, albeit a
relatively imprecise one with an uncertainty of ±7.)

Example: The difference between two measurements
In the example on page 53, we saw that two groups
of scientists measured the same thing, and the results
were W = 5.7± 1.0 for Webb et al. and C = 0.6± 0.6
for Chand et al. It’s of interest to know whether the
difference between their two results is small enough to
be explained by random errors, or so big that it couldn’t
possibly have happened by chance, indicating that some-
one messed up. The figure shows each group’s results,
with error bars, on the number line. We see that the two
sets of error bars don’t overlap with one another, but er-
ror bars are not absolute limits, so it’s perfectly possible
to have non-overlapping error bars by chance, but the
gap between the error bars is very large compared to
the error bars themselves, so it looks implausible that
the results could be statistically consistent with one an-
other. I’ve tried to suggest this visually with the shading
underneath the data-points.

To get a sharper statistical test, we can calculate the
difference d between the two results,

d = W − C ,

which is 5.1. Since the operation is simply the subtrac-
tion of the two numbers, an error in either input just
causes an error in the output that is of the same size.
Therefore we have QW = 1.0 and QC = 0.6, resulting
in σd =

√
Q2

W + Q2
C = 1.2. We find that the difference

between the two results is d = 5.1± 1.2, which differs
from zero by 5.1/1.2 ≈ 4 standard deviations. Looking
at the table on page 53, we see that the chances that
d would be this big by chance are extremely small, less
than about one in ten thousand. We can conclude to a
high level of statistical confidence that the two groups’
measurements are inconsistent with one another, and
that one group is simply wrong.
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Appendix 4: Graphing

Review of Graphing
Many of your analyses will involve making graphs.
A graph can be an efficient way of presenting data
visually, assuming you include all the information
needed by the reader to interpret it. That means
labeling the axes and indicating the units in paren-
theses, as in the example. A title is also helpful.
Make sure that distances along the axes correctly
represent the differences in the quantity being plot-
ted. In the example, it would not have been correct
to space the points evenly in the horizontal direction,
because they were not actually measured at equally
spaced points in time.

Graphing on a Computer
Making graphs by hand in your lab notebook is fine,
but in some cases you may find it saves you time to
do graphs on a computer. For computer graphing,
I recommend LibreOffice, which is free, open-source
software. It’s installed on the computers in rooms
416 and 418. Because LibreOffice is free, you can
download it and put it on your own computer at
home without paying money. If you already know
Excel, it’s very similar — you almost can’t tell it’s
a different program.

Here’s a brief rundown on using LibreOffice:

On Windows, go to the Start menu and choose
All Programs, LibreOffice, and LibreOffice Calc.
On Linux, do Applications, Office, OpenOffice,
Spreadsheet.

Type in your x values in the first column, and
your y values in the second column. For sci-
entific notation, do, e.g., 5.2e-7 to represent
5.2× 10−7.

Select those two columns using the mouse.

From the Insert menu, do Object:Chart.

When it offers you various styles of graphs to
choose from, choose the icon that shows a scat-
ter plot, with dots on it (XY Chart).

Adjust the scales so the actual data on the
plot is as big as possible, eliminating wasted
space. To do this, double-click on the graph so
that it’s surrounded by a gray border. Then
do Format, Axis, X Axis or Y Axis, Scale.

If you want error bars on your graph you can either
draw them in by hand or put them in a separate col-
umn of your spreadsheet and doing Insert, Y Error
Bars, Cell Range. Under Parameters, check “Same
value for both.” Click on the icon, and then use the
mouse in the spreadsheet to select the cells contain-
ing the error bars.

Fitting a Straight Line to a Graph
by Hand
Often in this course you will end up graphing some
data points, fitting a straight line through them with
a ruler, and extracting the slope.
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In this example, panel (a) shows the data, with error
bars on each data point. Panel (b) shows a best
fit, drawn by eye with a ruler. The slope of this
best fit line is 100 cm/s. Note that the slope should
be extracted from the line itself, not from two data
points. The line is more reliable than any pair of
individual data points.

In panel (c), a “worst believable fit” line has been
drawn, which is as different in slope as possible from
the best fit, while still pretty much staying consis-
tent the data (going through or close to most of the
error bars). Its slope is 60 cm/s. We can therefore
estimate that the precision of our slope is +40 cm/s.

There is a tendency when drawing a “worst believ-
able fit” line to draw instead an “unbelievably crazy
fit” line, as in panel (d). The line in panel (d), with
a very small slope, is just not believable compared
to the data — it is several standard deviations away
from most of the data points.

Fitting a Straight Line to a Graph
on a Computer
It’s also possible to fit a straight line to a graph using
computer software such as LibreOffice.

To do this, first double-click on the graph so that a
gray border shows up around it. Then right-click on
a data-point, and a menu pops up. Choose Insert
Trend Line.1 choose Linear, and check the box for
Show equation.

How accurate is your slope? A method for getting
error bars on the slope is to artificially change one
of your data points to reflect your estimate of how
much it could have been off, and then redo the fit
and find the new slope. The change in the slope tells
you the error in the slope that results from the error
in this data-point. You can then repeat this for the
other points and proceed as in appendix 3.

An alternative method is to use the LINEST func-
tion that is available in many spreadsheet programs.
For a description, see tinyurl.com/ya7wmdft. Cre-
ate the following formula in one cell of your spread-
sheet: =Linest(y-values,x-value, True.True). Then,
in excel, you need to press alt+ctrl+enter. In google
sheets, press enter. A table with two columns and
five rows will appear. The first number in the first
column is the slope of the graph, and the second

1“Trend line” is scientifically illiterate terminology that
originates from Microsoft Office, which LibreOffice slavishly
copies. If you don’t want to come off as an ignoramus, call it
a “fit” or “line of best fit.”

number in the first column is the error in the slope.

In some cases, such as the absolute zero lab and the
photoelectric effect lab, it’s very hard to tell how
accurate your raw data are a priori ; in these labs,
you can use the typical amount of deviation of the
points from the line as an estimate of their accuracy.

Comparing Theory and Experiment
Figures (e) through (h) are examples of how we would
compare theory and experiment on a graph. The
convention is that theory is a line and experiment is
points; this is because the theory is usually a predic-
tion in the form of an equation, which can in prin-
ciple be evaluated at infinitely many points, filling
in all the gaps. One way to accomplish this with
computer software is to graph both theory and ex-
periment as points, but then print out the graph and
draw a smooth curve through the theoretical points
by hand.

The point here is usually to compare theory and
experiment, and arrive at a yes/no answer as to
whether they agree. In (e), the theoretical curve
goes through the error bars on four out of six of
the data points. This is about what we expect sta-
tistically, since the probability of being within one
standard deviation of the truth is about 2/3 for a
standard bell curve. Given these data, we would
conclude that theory and experiment agreed.

In graph (f), the points are exactly the same as in
(e), but the conclusion is the opposite. The error
bars are smaller, too small to explain the observed
discrepancies between theory and experiment. The
theoretical curve only goes through the error bars on
two of the six points, and this is quite a bit less than
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we would expect statistically.

Graph (g) also shows disagreement between theory
and experiment, but now we have a clear systematic
error. In (h), the fifth data point looks like a mistake.
Ideally you would notice during lab that something
had gone wrong, and go back and check whether you
could reproduce the result.
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Appendix 5: Finding Power Laws from Data

For many people, it is hard to imagine how scientists
originally came up with all the equations that can
now be found in textbooks. This appendix explains
one method for finding equations to describe data
from an experiment.

Linear and nonlinear relationships
When two variables x and y are related by an equa-
tion of the form

y = cx ,

where c is a constant (does not depend on x or y),
we say that a linear relationship exists between x
and y. As an example, a harp has many strings of
different lengths which are all of the same thickness
and made of the same material. If the mass of a
string is m and its length is L, then the equation

m = cL

will hold, where c is the mass per unit length, with
units of kg/m. Many quantities in the physical world
are instead related in a nonlinear fashion, i.e., the
relationship does not fit the above definition of lin-
earity. For instance, the mass of a steel ball bearing
is related to its diameter by an equation of the form

m = cd3 ,

where c is the mass per unit volume, or density, of
steel. Doubling the diameter does not double the
mass, it increases it by a factor of eight.

Power laws
Both examples above are of the general mathemati-
cal form

y = cxp ,

which is known as a power law. In the case of a
linear relationship, p = 1. Consider the (made-up)
experimental data shown in the table.

h=height of rodent
at the shoulder
(cm)

f=food eaten per
day (g)

shrew 1 3
rat 10 300
capybara 100 30,000

It’s fairly easy to figure out what’s going on just
by staring at the numbers a little. Every time you
increase the height of the animal by a factor of 10, its
food consumption goes up by a factor of 100. This
implies that f must be proportional to the square of
h, or, displaying the proportionality constant k = 3
explicitly,

f = 3h2 .

Use of logarithms
Now we have found c = 3 and p = 2 by inspection,
but that would be much more difficult to do if these
weren’t all round numbers. A more generally appli-
cable method to use when you suspect a power-law
relationship is to take logarithms of both variables.
It doesn’t matter at all what base you use, as long as
you use the same base for both variables. Since the
data above were increasing by powers of 10, we’ll use
logarithms to the base 10, but personally I usually
just use natural logs for this kind of thing.

log10 h log10 f
shrew 0 0.48
rat 1 2.48
capybara 2 4.48

This is a big improvement, because differences are
so much simpler to work mentally with than ratios.
The difference between each successive value of h
is 1, while f increases by 2 units each time. The
fact that the logs of the f ′s increase twice as quickly
is the same as saying that f is proportional to the
square of h.

Log-log plots
Even better, the logarithms can be interpreted visu-
ally using a graph, as shown on the next page. The
slope of this type of log-log graph gives the power
p. Although it is also possible to extract the pro-
portionality constant, c, from such a graph, the pro-
portionality constant is usually much less interesting
than p. For instance, we would suspect that if p = 2
for rodents, then it might also equal 2 for frogs or
ants. Also, p would be the same regardless of what
units we used to measure the variables. The con-
stant c, however, would be different if we used dif-
ferent units, and would also probably be different for
other types of animals.

62 Lab Appendix 5: Finding Power Laws from Data



63


