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a / The S&P 500 stock index
is a function of time.

b / Given two points on a line, we
can find its slope by computing
∆y/∆x , the rise over the run.

Chapter 1

An informal introduction to
the derivative

1.1 Review: functions and the slope of a linear
function

Calculus is the study of rates of change, and of how change accumu-
lates. For example, figure a shows the changes in the United States
stock market over a period of 24 years. The y axis of this graph
is a certain weighted average of the prices of stock, and the x axis
is time, measured in years. This is an example of the concept of
a mathematical function, which you’ve learned about in a previous
course. We say that the stock index is a function of time, meaning
that it depends on time. What makes this graph the graph of a
function is that a vertical line only intersects it in one place. This
means that at any given time, there is only one value of the index,
not more than one.

Figure a shows a function that was determined by measurement
and observation, but functions can also be defined by a formula. For
example, we could define a function y by stating that for any number
x, the value of the function is given by y(x) = x2. We sometimes
state this kind of thing more casually by referring to “the function
y = x2” or “the function x2.”

I drew figure a by graphing yearly data, so it’s made of line
segments that connect one year to the next. Each of these line
segments has a slope, defined as

slope =
y2 − y1

x2 − x1
. (1)

The slope measures how fast the function is changing. A positive
slope says the function is increasing, negative decreasing. If the
slope is zero, the function is not changing at all.

It’s often convenient to express this kind of thing with the no-
tation ∆, the capital Greek letter delta, which is the equivalent of
our Latin “D” and here stands for “difference.” In terms of this
notation, we have

slope =
∆y

∆x
. (2)

A symbol like ∆y indicates the change in y, ∆y = y2−y1. It doesn’t
mean a number ∆ multiplied by a number y.

13



d / The tangent line at a point on
a curved graph.

1.2 The derivative
1.2.1 An informal definition of the derivative

In many real-world applications, it makes sense to think of change
as occurring smoothly and continuously. For example, the level of
water in a reservoir rises and falls with time. Although it’s true that
this change happens one molecule at a time, so that in theory there
are abrupt jumps, these jumps are too tiny to matter in practice.

c / The original graph, on the left, shows the water level in Trinity Lake, California, for the thirty-day
period beginning March 7, 2014. Each successive magnification to the right is by a factor of four.

We want to keep track of the net rate of flow into the reservoir.
We would like to define this rate as the slope of the graph, but the
graph isn’t a line, so how do we do that? We could pick two points
on the graph and connect them with a line segment, but that would
only represent an average rate of flow, not the actual rate of flow as
it would be measured by a flow gauge at one particular time.

To get around these difficulties, we imagine picking a point of
interest on the graph and then zooming in on it more and more,
as if through a microscope capable of unlimited magnification. As
we zoom in, the curviness of the graph becomes less and less ap-
parent. (Similarly, we don’t notice in everyday life that the earth
is a sphere.) In figure c, we zoom in by 400%, and then again by
400%, and so on. After a series of these zooms, the graph appears
indistinguishable from a line, and we can measure its slope just as
we would for a line. This is an intuitive description of what we
mean by the slope of a function that isn’t a line. We call this slope
the derivative of the function at the point of interest. This is ad-
mittedly not a mathematically rigorous definition, but it fixes our
minds on the concept we want. A useful example is that if we con-
sider a car’s odometer reading as a function of time in hours, then
its speedometer reading is the derivative of the odometer reading.

If we were only shown the ultra-magnified view in the rightmost
part of figure c, we wouldn’t know that the graph was curved at all.
We would think the whole thing was a line. This hypothetical line
is called the tangent line at the point marked with a dot. When
you stand on the earth’s surface and look at a point on the horizon,

14 Chapter 1 An informal introduction to the derivative



.Box 1.1 Sets

A set is a collection of
things. The things can, for ex-
ample, be numbers. They can
even be other sets. A set can
be defined by listing the things
it holds, which are called its el-
ements or members. For exam-
ple, the solutions of the equa-
tion x2 = 1 are the members of
the set {−1, 1}. Often we deal
with infinite sets such as the set
of all the natural numbers, and
it is then impossible to list all
the elements. Instead, we can
define a set using notation like
this:

S = {x|x2 > 0},

read as, “the set of all x such
that x squared is greater than
zero.” Often, as in this ex-
ample, we don’t explicitly say
what to consider as the possi-
ble values of x; since the focus
of calculus is on real numbers,
the implication in this course is
usually that “the set of all x
such that . . . ” means “the set
of all real numbers x such that
. . . ”

The notation ∈ means “is a
member of,” e.g., 1 ∈ S for the
set S defined above.

Two sets are the same if
they have the same members.
For example, let

T = {a|a2 > 0} and

U = {g|g 6= 0}

Because S, T, and U have the
same members, they are equal,
S = T = U.

your line of sight is a tangent line to the surface. The derivative of
a function is the slope of the tangent line.

1.2.2 Locality of the derivative

From this informal definition it seems that the derivative of a
function at a certain point should depend only on the behavior of the
function near that point, not far away. To state this idea precisely,
we need to use some notation referring to sets, reviewed in box 1.1,
and intervals.

Often it is useful to define a set of all the real numbers that lie
within a certain range, between numbers a and b. This is called an
interval. We can define intervals that contain or don’t contain their
endpoints.

Definition
type of interval definition abbreviation
closed {x|x ≥ a and x ≤ b} [a, b]
open {x|x > a and x < b} (a, b)

We can also have intervals like [a, b) and (a, b], which are de-
fined in the obvious way. A similar notation for infinite intervals is
introduced in problem i4, p. 41.

Locality of the derivative
The derivative is local, in the following sense. Suppose there

is an interval I = (a, b) on which the functions f and g are
equal. That is, for any x ∈ I, f(x) = g(x). Then at any point
in I, the derivatives of f and g are the same.

e / Fred and Ginger are both driving on the freeway. As Ginger is
about to pass Fred, she notices a motorcycle cop, so she abruptly
decelerates and then stays alongside Fred. The derivative of their
position is their speed. The derivative is local, so by the time the cop
measures their speeds, at point P, they are the same.

Section 1.2 The derivative 15



f / Some properties of the
derivative.

.Box 1.2 Ideas about
proof: stating your as-
sumptions

The properties listed here
can be used to solve problems,
as in section 1.2.4, where we’ll
calculate the derivative of the
function y = x2. But math
isn’t just calculation. We also
want to prove general facts. A
proof always requires certain
starting assumptions, e.g., you
can’t prove to a friend that
cap-and-trade is the best way
to deal with global warming if
your friend won’t admit that
global warming exists. This list
of properties includes enough
assumptions to prove quite a
few general facts about deriva-
tives.

1.2.3 Properties of the derivative

The following properties of the derivative are intuitively reason-
able based on our conceptual definition, and they will be enough
to allow us to do quite a bit of interesting calculus before we come
back and make a more general definition.

constant The derivative of a constant function is zero.

line The derivative of a linear function is its slope.

shift Shifting a function y(x) horizontally or vertically to form a
new function y(x + a) or y(x) + b gives a derivative at any
newly shifted point that is the same as the derivative at the
corresponding point on the unshifted graph.

flip Flipping the function y(x) horizontally or vertically to form a
new function y(−x) or −y(x) negates its derivative at corre-
sponding points.

addition The derivative of the sum of two functions is the sum of
their derivatives.

stretch Stretching a function y(x) vertically to form a new func-
tion ry(x) multiplies its derivative by r at the corresponding
points, while stretching it horizontally to make y(x/s) divides
its derivative by s.

no-cut Suppose that for a certain point P on the graph of a func-
tion, there is a unique linear function ` that passes through
P but doesn’t cut through the graph at P. Then the graph of
` is the tangent line, and the derivative of the function at P
equals the slope of the line.

As an example of the stretch rule, cars sold in the U.S. have
odometers that read out in units of miles, while those sold elsewhere
are calibrated in kilometers, so their readings are greater by the
conversion factor r = 1.6. By the stretch property, cars outside the
U.S. also have speedometer readings that are greater by this factor:
they read out in kilometers per hour.

There is usually, but not always, a line like the one described by
the no-cut property. Sometimes there is a tangent line but it isn’t
a no-cut line. If this kind of mathematical puzzle interests you, try
sketching the graphs of the functions x3 and

√
x. You should be

able to convince yourself that their tangent lines at x = 0 can’t be
described by no-cut functions.

By the way, these are just names I’ve given to these properties,
and if you use them with other people, they won’t know what you
mean. Once we’ve done more calculus, we’ll see that several of these
properties are actually special cases of a more general rule called the
chain rule.

16 Chapter 1 An informal introduction to the derivative



g / The function y = x2.

h / The line 2x − 1 intersects
the function x2 without cutting it.

1.2.4 The derivative of the function y = x2

As our first example of a derivative, let’s use the function y = x2.
Its graph is a parabola. The simplest point at which to find its
derivative is x = 0, the central point of the graph. From figure
g, it seems like zooming in more and more on this point would give
something that looked more and more like a horizontal line, and this
suggests that the derivative at this point is zero. We can confirm this
by using the flip property. Flipping the graph horizontally across
the y axis doesn’t change the graph. (Recall that a function with
this symmetry is called an even function.) Since the flip doesn’t
change the function, it can’t change the derivative of the function.
But the flip rule says that when we flip a function, the derivative
is negated at the corresponding point on the new graph. Here the
point of interest is x = 0, and that point doesn’t move when we flip
it, so its corresponding point on the new graph is the same point.
Thus the derivative at x = 0 must be the same as itself, but also
equal to minus itself. Zero is the only number that remains the same
when we reverse its sign, so the derivative at the center of the graph
is zero.

How about the derivative at the point x = 1? Here we can apply
the no-cut rule. By laying a ruler against this point, we find that the
linear function `(x) = 2x−1 seems to intersect the parabola without
cutting across it. To prove that this is true, we can compute the
difference between the two functions, y(x) − `(x) = x2 − 2x + 1.
Completing the square allows us to rewrite this as (x − 1)2, which
is clearly positive for any value of x other than 1. Therefore the
function ` meets the conditions of the no-cut rule, and the derivative
of x2 at x = 1 is 2.

Having found the derivative of x2 at x = 1, we can now use the
stretch rule to find it at any other point. For example, suppose we
want to know the derivative at x = 3. If we were to take the graph
of the function x2 and stretch it by a factor of 3 horizontally and
9 vertically, we would get the same graph again. These stretches
take the point (1, 1), where we know the derivative, to the point
(3, 9), where we want to know it. The stretch rule tells us that
the horizontal stretch decreases the derivative to 1/3 of its original
value, but the vertical stretch increases it by 9 times, so that over
all, the derivative at (3, 9) is (1/3)(9) = 3 times greater than its
value at (1, 1). Thus the derivative at x = 3 equals 6.

There is nothing special about the number 3. The method that
we applied to x = 3 would work for any other number x, not just
for 3. We find that the derivative of the function x2 at any point
x equals 2x. Taking stock of what we’ve done, we started with the
function x2, and found that at any point x, the derivative was 2x.

Section 1.2 The derivative 17



i / The derivative of x2 is it-
self a function. As we change
x , the slope of the tangent line
changes.

j / Example 1.

k / Example 2.

1.2.5 The derivative of a function is a function itself.

We’ve found that the derivative of the function x2 at a point x
equals 2x. The expression 2x can be thought of as a function of x.
So what we’ve really done is to take a function and construct a new
function that gives the derivative of the original function at each
point. One way of notating this new function is y′, read “y prime.”
We have

y = x2

y′ = 2x.

The craft of finding this kind of derivative-function from the original
function is called differentiation. We have differentiated the function
x2 and gotten its derivative, the function 2x.

Hiking Example 1
Figure j shows a graph of my favorite route for climbing a moun-
tain near where I live. (My wife rolls her eyes when I tell her the
dog and I are doing this hike yet again.) How steep is the hike?
There is no generic answer to this question, since the derivative
of this function is itself a function. The derivative depends on
x , so it has different values in different places. The slope of the
graph at point P appears to be the steepest, with y ′ ≈ 0.80. At
other points, y ′ has smaller values. At Q, it’s slightly negative.
The derivative y ′ is a function of x ; it depends on which part of
the hike you’re presently climbing.

An indifference curve Example 2
Let’s say you enjoy beer, and you also enjoy sushi. How much

would you prefer to have of each? Economists define a graph,
figure k, called an indifference curve. For a particular person, any
two points on the curve are supposed to be equal in preference;
the person is indifferent as to which one they get. For example,
the person whose indifference curve is drawn in figure k is equally
happy having one piece of sushi and five beers, or having three
pieces of sushi and two beers.

There is a quantity called the marginal rate of substitution (MRS),
which is defined as minus the slope of the indifference curve, −y ′.
At point P in figure k, the MRS is high, which means that the per-
son would have been just as happy to have another piece of sushi
and a lot less beer. The MRS, −y ′, is a function of where you are
on the curve. If the person is at point Q on the graph, they have
a moderate amount of beer and a moderate amount of sushi,
so they consider them of more comparable value. Indifference
curves are discussed further in section 3.4.3, p. 89.

18 Chapter 1 An informal introduction to the derivative



What if x is in the exponent rather than the base? Example 3
The method used above to differentiate x2 was basically a trick,
and it depended on a special property of the function x2, which is
that its graph can be stretched horizontally and vertically in such
a way that it can be brought back on top of itself again. The
reason that this subject is called “calculus” rather than “trickery”
is that we will soon (in ch. 2) develop more systematic methods
for calculating rates of change — methods that don’t depend on
tricks.

It may nevertheless be of interest to note that a similar trick is
capable of telling us something about a different type of func-
tion, one in which x appears in the exponent rather than the
base. What about the function 2x , for example? A pair of rabbits
marches off of Noah’s ark. Two bunnies become four, then 8, 16,
32, and so on. What is the derivative of this function, i.e., the rate
of change of the rabbit population per generation? (Strictly speak-
ing, the derivative is only meaningful if we fill in all the non-integer
values of x , which isn’t really meaningful in terms of rabbits, since
you can’t have a fraction of a rabbit.)

It happens that the function 2x , like x2, can be brought back on
top of itself again in a simple geometrical way. Instead of a hori-
zontal stretch and a vertical stretch, we use a horizontal shift and
a vertical stretch. For example, if we shift the graph of 2x to the
right by 3 units, and then stretch it vertically by a factor of 8, we get
back the same graph again. This has come about because of the
more fundamental property of exponential functions bc+d = bcbd .
(In our example, the base b is 2.) As a result, we find that after 3
generations, when the rabbit population goes up by a factor of 8,
its derivative also goes up by a factor of 8. That is, the derivative
of an exponential function y = bx is proportional to y , or

y ′ = (. . .)y ,

where “. . . ” is a constant of proportionality that depends on the
base b. What is the constant of proportionality? We’ll return to
this question in example 6 on p. 51.

A similar example is credit card debt. The more credit card debt
you have, the faster your debt grows; in this example, the constant
of proportionality relates to the interest rate.

Discussion question

A What is wrong with the logic of the following argument? You should
believe in God, because if you don’t, when you die you’ll go to Hell.

Refer to box 1.2 on p. 16.
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.Box 1.3 Ideas about
proof: examples don’t
prove a rule

An example can’t prove a
general rule. French is the offi-
cial language of Côte d’Ivoire,
but that doesn’t prove that
it’s the official language of all
of Africa. In fact there are
other countries in Africa, such
as Egypt, that speak differ-
ent languages, such as Ara-
bic. In general, an example can
never prove a general rule, but
a counterexample (Egyptians
speaking Arabic) can disprove
a rule (all of Africa speaking
French).

l / Example 4. The top graph
shows the original function, the
bottom its derivative.

1.3 Derivatives of powers and polynomials
In section 1.2.4, we found that the derivative of x2 was 2x. Straight-
forward application of the same technique to x3 gives 3x2. We see
a pattern:

Derivatives of powers
The derivative of xn equals nxn−1, if n is any integer greater than
or equal to 1.

Observing the pattern or giving examples is not enough to prove
this general rule (box 1.3). To prove this for all these values of n,
rather than carrying out the proof for one value at a time, it will
be more convenient to use techniques developed later in the book
(section 2.6, p. 57).

If we combine this with the addition and stretch rules, we know
enough to differentiate any polynomial.

Differentiating a polynomial Example 4
. Find the derivative of y = x3 − 7x + 1.

. The addition property of the derivative tells us that we can break
this problem down into three parts,

(x3 − 7x + 1)′ = (x3)′ + (−7x)′ + (1)′,

where the primes indicate “derivative of . . . ” The stretch property
says that (−7x)′ is the same as (−7)(x)′, so the derivative of our
polynomial becomes

(x3)′ + (−7)(x)′ + (1)′.

We know how to differentiate powers: (x3)′ = 3x2, (x ′) = 1, and
(1)′ = 0. (We could have found the second term from the line
property, and the final one from the constant property.) The result
is

y ′ = 3x2 − 7.

The functions y and y ′ are graphed in figure l, and five points are
marked as examples of how the slope of y corresponds to the
value of y ′. Reading across from left to right on the top graph,
the slopes are positive, zero, negative, zero, and positive. On the
bottom graph, the values of y ′ are easily seen to be positive, zero,
negative, zero, and positive.
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1.4 Two trivial hangups
1.4.1 Changing letters of the alphabet

The following point is relatively trivial, but nevertheless hangs
up many students in applying calculus to real life. In a calculus text-
book, we typically use the letters x and y, with y being a function
of x. That is, x is the independent variable, and y is the dependent
one. In real-life applications, however, the variables have definite
meanings, and we want to use letters that make it easy to remem-
ber what they stand for.

For example, suppose that a social media company has a certain
number of users, and they need to have enough computing power
at their data center to be able to handle all of those users. This
computing power will cost them a certain amount of money per
month. In this example, it would be natural to use the notation u
for the number of users, and c for the monthly cost in dollars. Then
c depends on u, and we have a function c(u). Let’s say the function
is this:

c = u2

This is not an unrealistic equation to imagine for this example, since
the company has to keep track of every user’s relationship to every
other user. For example, user Andy may be able to mark himself
as a “fan” or “follower” of user Betty, and then the company has to
store a piece of information in a database to record this relationship.
If there are a thousand users, there are 1000×1000 or a million such
possible relationships that may need to be stored in a database.

Now if the company’s user base is growing, it’s of interest to
them to know how much their costs will go up for each additional
user (the marginal cost). This would be expressed by the derivative
c′(u). Although the letters of the alphabet are different than the
ones we used in our earlier examples, that makes no difference in
how we do the math. If differentiating y = x2 with respect to x
gives y′ = 2x, then differentiating c = u2 with respect to u gives the
same result but with the letters changed,

c′ = 2u

1.4.2 Symbolic constants

The vertical stretch property of the derivative tells us that if we
know a derivative such as

(x2)′ = 2x,

then we can differentiate a function like 5x2 by simply letting the
factor of 5 “come along for the ride,”

(5x2)′ = (5)(x2)′

= (5)(2x)

= 10x.
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Now suppose that we want to differentiate bx2, where b is a constant,
i.e., b doesn’t depend on x. To many students this looks like a much
more difficult and abstract problem, but the procedure is the same:

(bx2)′ = (b)(x2)′

= (b)(2x)

= 2bx.

The same goes for a vertical shift. If we aren’t intimidated by com-
puting

(x2 + 5)′ = (x2)′ = 2x,

then there is no reason to be scared of the similar computation
(again with b being a constant) of

(x2 + b)′ = (x2)′ = 2x.

1.5 Applications
1.5.1 Velocity

Defining velocity

One of our prototypical examples has been the odometer and
speedometer on a car’s dashboard. In fact, if we want to define
what velocity means, we have to define it as a derivative. Suppose
an object (it could be a car, a galaxy, or a subatomic particle) is
moving in a straight line. By choosing a unit of distance and a
location that we define as zero, we can superimpose a number line
onto this line. (In the example of the car, the unit of distance might
be kilometers, and the zero position would be the point on the road
at which we last pushed the button to zero the odometer.) Let the
position defined in this way be x. Then x is a function of time t
(such as the time measured on a clock), and we notate this function
as x(t). Note that although we typically use the letters x and y in a
generic mathematical context, with y being a function of x, in our
present example it is more natural to use different letters, and now
x is the dependent variable, not the independent one. That is, x is
a function of t, but t may not be a function of x; for example, if a
car stops and backs up, then it can visit the same position twice,
so that a graph of t versus x would fail the vertical line test for a
function. In this notation, the velocity v is defined as the derivative

v(t) = x′(t).

Constant acceleration

An important special case is the one in which the position func-
tion is of the form

x(t) =
1

2
at2,
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where a is a constant, and the factor of 1/2 is conventional, and
convenient for reasons that will become more apparent in a moment.
Differentiating with respect to t, we have the velocity function

v(t) = at,

where the symbolic constant a has been treated like any other con-
stant, and the 1/2 in front has been canceled by the factor of 2 that
comes down from the exponent. We see that the velocity is pro-
portional to the amount of time that has passed. If t is measured
in seconds and v in meters per second (m/s), then the constant a,
called the acceleration, tells us how much speed the object gains with
every second that goes by, in units of m/s/s, which can be written
as m/s2. Falling objects have an acceleration of about 9.8 m/s2.
This is a measure of the strength of the earth’s gravity near its own
surface.

Dropping a rock down a well Example 5
. Looking down into a dark well, you can’t see how deep it is. If
you drop a rock in and hear it hit the bottom in 2 seconds, how
deep is the well?

.

x(t) =
1
2

at2 ≈ 20 m

The shift property applied to constant acceleration Example 6
The equations for constant acceleration were given above with
the unstated assumption that both the position and the velocity
would be zero at the time t = 0. If we relax this assumption, then
the position function can be of the more general form

x(t) = xo +
1
2

a(t − to)2,

where to is some initial time, at which the position equals xo. By
the shift property of the derivative (p. 16), the velocity function is
then

v (t) = a(t − to).

1.5.2 When do you need a derivative?

Finding velocity from position data is a classic application of
calculus, and yet how do we know when we really need calculus for
this application? After all, many people do simple computations
involving velocity without knowing calculus.

Here’s an example where calculus really is required. In July
1999, Popular Mechanics carried out tests to find which car sold by
a major auto maker could cover a quarter mile (402 meters) in the
shortest time, starting from rest. Because the distance is so short,
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m / Revenue from a tram as
a function of the fare charged.

this type of test is designed mainly to favor the car with the greatest
acceleration, not the greatest maximum speed (which is irrelevant
to the average person). The winner was the Dodge Viper, with a
time of 12.08 s. If we divide the distance by the time, we get

v =
∆x

∆t
= 33.3 m/s,

which is about 74 miles per hour or 120 kilometers per hour. Not
a very impressive speed, is it? That’s because it’s wrong. During
those twelve seconds of acceleration, the car didn’t have just one
speed. It started at a velocity of zero and went up from there. The
top speed was nearly double the one calculated above (53 m/s ≈
119 mi/hr ≈ 191 km/hr). The important point here is that when
we measure a rate of change using an expression of the form

∆ . . .

∆ . . .
,

we only get the right answer if the rate of change is constant. In
this example the rate of change is the velocity, and the velocity is
not constant. To find the correct velocity, we first need to decide
at which time we want to know the velocity, and then evaluate the
derivative at that time.

1.5.3 Optimization

An extremely important use of the derivative is in optimiza-
tion. For example, suppose that the operators of a privately owned
mountain tram in Switzerland want to optimize their profit from
transporting sightseers to a mountain summit in the Alps. The cost
of building the tram is a sunk cost, and operating it for one day
costs the same amount of money regardless of the number of pas-
sengers. Therefore the only goal is to get the maximum number
of Swiss francs in the cash registers at the end of each day. The
operators can raise the fare f in order to make more money, but if
the fare is too high then not as many people will be willing to pay
it. Suppose that the number of riders in a given day is given by
a− bf , where a and b are constants. That is, if the ride was free, a
passengers would ride each day, but for every one-franc increase in
the fare, b people will decide not to go. The tram’s daily revenue is
then found by multiplying the number of riders by the fare, which
gives the function

r(f) = (a− bf)f . (3)

For insight into what’s going on, figure m shows this function in
the case where a = 100 and b = 1. When the fare is zero, we get
plenty of customers every day, but they don’t pay anything, so our
revenue is zero. When the fare is 100 francs, the number of paying
passengers goes down to zero, so again we have no revenue.

Somewhere in between these extremes we have the fare that
would optimize our revenue: the maximum of the function r. At
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n / A zero derivative often,
but not always, indicates a local
extremum. Sometimes we have
a zero derivative without a local
extremum, and sometimes a local
extremum with an undefined or
nonzero derivative.

o / The railroad tracks stretch
toward a vanishing point at
infinity. Are there infinitely big or
infinitely small numbers?

this point on the graph, the derivative is zero, so to find it, we should
differentiate r, set it equal to zero, and solve for f .

We haven’t yet learned enough of the techniques of calculus to
know how to find the derivative of a function with the form of equa-
tion (3), but by multiplying out the product we can make it into a
polynomial, which is a form that we do know how to differentiate:

r(f) = −bf2 + af

r′(f) = −2bf + a

Setting r′ equal to zero, we have

0 = −2bf + a

f =
a

2b
.

With the particular numerical values used to construct the graph,
this gives an optimal fare of 50 francs, which looks about right from
the graph.

By searching for points where the derivative is zero we can of-
ten, but not always, find the the points where a function takes on
its maximum and minimum values. The term extremum (plural ex-
trema) is used to refer to these points. Figure n shows that quite a
few different things can happen, and that searching for a zero deriva-
tive doesn’t always tell us the whole story. We have a zero derivative
at point G, but G is only a maximum compared to nearby points;
we call G a local maximum, as opposed to the global maximum D.
The zero-derivative test doesn’t distinguish a local minimum like B
from a local maximum. A zero derivative may not indicate a local
extremum at all, as at C and H. We can have points such as E and
F where the derivative is undefined. An extremum can occur at a
point like A that is the endpoint of the function’s domain.1 We
will come back to these technical points in more detail later in the
book.2

1.6 Review: elementary properties of the real
numbers

I began this chapter by defining calculus as the study of rates of
change, but it could equally well be described as the study of in-
finity. The intuition behind the derivative is that we zoom in on
a selected point on a smooth curve, until the curve appears like a
line and we can measure the slope of the line. But the curve won’t
appear perfectly straight until we’ve cranked up our microscope to
an infinitely big magnification, at which point we’ll be seeing values

1For a more thorough review of notions such as the domain of a function, see
section 5.5, p. 131.

2section 3.4.1, p. 86

Section 1.6 Review: elementary properties of the real numbers 25



p / Simon Stevin (1548-1620)
was a Flemish mathematician
and engineer who lived a cen-
tury before the invention of the
calculus. He wrote a book on
decimals, using a notation some-
what different from the modern
one. (The figure shows the mod-
ern notation and Stevin’s notation
for the decimal expansion of

√
2.)

Stevin’s decimals represent an
alternative approach to defining
what we mean by a real number:
rather than defining them by
listing their properties, we can
define them by constructing them
out of simpler objects (decimal
digits). Stevin argued for allowing
any arbitrary, infinite string of
digits, which is equivalent to
including all the real numbers
but forbidding infinitely big and
infinitely small numbers.

of ∆x and ∆y that are infinitely small (but not zero). Calculus
was invented by Isaac Newton and Gottfried Wilhelm von Leibniz
back in the era of powdered wigs and silk stockings, and in those
days the concept of “number” was still in the process of being stan-
dardized and formalized.3 Newton and Leibniz found it convenient
to work with symbols representing infinitely big and infinitely small
numbers, and a debate ensued about whether it was all right to call
those things “numbers.”

Today we think about this kind of thing in a different way. De-
cisions about what to allow as a legal number are thought of not
as matters of right and wrong but as definitions. We define certain
sets of numbers, including:

the integers: whole numbers such as −1, 0, and 1

the rational numbers: ratios of integers such as 2/1 and 3/4

the real numbers, including quantities like π and
√

2

the complex numbers, such as
√
−1

Do these systems contain infinitely big and infinitely small num-
bers? Can they? Should they?

To answer these questions, we need to give a more definite ac-
count of how these number systems are defined. One good way to
define them is with a list of their axioms. (For an alternative, con-
structive approach, see figure p.) Here is a list of axioms for the
system of real numbers. Except as otherwise stated, each of these
properties holds for any real-number values of the symbols x, y, . . .

commutativity x+ y = y + x and xy = yx

identities There exist numbers 0 and 1 such that for any x, x+0 =
x and 1x = x.

inverses For any x, there exists a number −x such that x+(−x) =
0. For any nonzero x, there exists 1/x such that (x)(1/x) = 1.

associativity x+ (y + z) = (x+ y) + z and x(yz) = (xy)z

distributivity x(y + z) = xy + xz

ordering We can define whether or not x < y, and this ordering
relates to the addition and multiplication operations in specific
ways, which you’ve seen defined in a previous course on algebra
and which for brevity we will not explicitly give here.

3For more on the history, see Blaszczyk, Katz, and Sherry, “Ten misconcep-
tions from the history of analysis and their debunking,” arxiv.org/abs/1202.

4153.
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q / Gottfried Wilhelm Leibniz
(1646-1716).

This list of axioms holds for the real numbers, but it fails for
the integers, since for example the integer 2 doesn’t have an inverse
that is an integer. It also fails for the complex numbers, which don’t
have a well-defined ordering. The list seems detailed and precise, so
it may come as a surprise that it does not suffice to prove anything
about whether or not infinite numbers exist. The list of axioms
is in fact not enough to characterize the real numbers. Later in
this book we will add another axiom, called the completeness axiom
(section 4.5, p. 111), to the list. The completeness axiom holds for
the reals but not the rationals, and it also rules out the existence
of infinitely large or infinitely small real numbers. It is possible to
extend the real number system to a larger one that does include
infinities (section 2.9, p. 64).

1.7 The Leibniz notation
1.7.1 Motivation

Lacking the more precise modern ideas described in section 1.6,
Leibniz argued as follows. Let’s just make ∆x and ∆y infinitely
small (but not zero). In modern terminology, this means that they
can’t be real numbers. To make it clear that we’re talking about
infinitely small differences in x and y, we change the notation to dx
and dy. Recall that ∆ is the Greek version of capital “D,” so we’re
using a smaller version of the letter, “d,” to represent a change that
is smaller (in fact, infinitely small). Dividing these two “numbers”
(whatever mysterious species of number they may turn out to be),
we get the derivative,

dy

dx
.

Although the notation’s original justification was not up to modern
standards of rigor, it is one of the most expressive and well-designed
mathematical notations ever devised, and has been the most com-
monly used notation for the derivative ever since Leibniz published
it in 1686. Around 1970, mathematicians clarified some of these
issues and essentially justified and codified the centuries-old proce-
dures for manipulating the dy’s and dx’s; section 2.9 on p. 64 boils
these modern developments down to a simple set of practical rules.

1.7.2 With respect to what?

One of the good things about the Leibniz notation is that it
states clearly what we’re differentiating with respect to. For example,
dv/dt could indicate how much a car was speeding up with each
passing second of time, while dv/dx would measure the speed gained
with each meter that it moved down the road.
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.Box 1.4 The SI

The metric system is the
system of units used universally
in engineering and the sciences,
as well as in daily life in ev-
ery country except the United
States. Formally known as the
Système International (SI), it
was invented during the French
Revolution. For mechanical (as
opposed to electrical) measure-
ments, the SI uses three basic
units:

meters for length

kilograms for mass

seconds for time

Other measurements are built
from these, e.g., meters per sec-
ond (m/s) for velocity.

There is a system of prefixes
that represent powers of ten in
which the exponent is a mul-
tiple of three. The most com-
mon of these are kilo- = 103,
and milli- = 10−3. (The pre-
fix centi- = 10−2 is used only
in the centimeter, and doesn’t
require memorization since we
know that dollars and euros are
subdivided into 100 cents.)

1.7.3 Shows units

Another selling point of the notation is that it shows the units
of the derivative. For example, the definition of velocity, expressed
in Leibniz notation, is

v =
dx

dt
.

On the left-hand side we have velocity, whose units in the SI are
meters per second. On the right we have a tiny change in position,
which has units of meters, divided by a tiny change in time, which
has units of seconds. In terms of units, then, the equation reads as

m/s =
m

s
,

which works out correctly. In more complicated examples, checking
the units like this is a powerful method for checking your answer to
a calculus problem.

Burning gasoline Example 7
. Let x be a car’s odometer reading and g the amount of gasoline
burned since the odometer was zeroed. One can think of x as
a function of g. Many cars have a digital display that shows the
function x ′(g) in real time. Express this using the Leibniz notation.
What is the interpretation of this derivative, and what units does
it have?

. The Leibniz notation is dx/dg, which makes it clear that the
units are kilometers per liter, km/L (or, in U.S. units, miles per
gallon). The interpretation is that this number gives a measure
of how efficient the car is at using fuel to transport you a given
distance.

An insect pest Example 8
. An insect pest from the United States is inadvertently released
in a village in rural China. The pests spread outward at a rate
of s kilometers per year, forming a widening circle of contagion.
Find the number of square kilometers per year that become newly
infested. Check that the units of the result make sense. Interpret
the result.

. Let t be the time, in years, since the pest was introduced. The
radius of the circle is r = st , and its area is a = πr2 = π(st)2.
To make this look like a polynomial, we have to rewrite it as a =
(πs2)t2. The derivative is

da
dt

= (πs2)(2t)

= (2πs2)t

The units of s are km/year, so squaring it gives km2/year2. The 2
and the π are unitless, and multiplying by t gives units of km2/year,
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r / Example 9.

which is what we expect for da/dt , since it represents the number
of square kilometers per year that become infested.

Interpreting the result, we notice a couple of things. First, the rate
of infestation isn’t constant; it’s proportional to t , so people might
not pay so much attention at first, but later on the effort required
to combat the problem will grow more and more quickly. Second,
we notice that the result is proportional to s2. This suggests that
anything that could be done to reduce s would be very helpful.
For instance, a measure that cut s in half would reduce da/dt by
a factor of four.

A whirling bucket Example 9
. Figure r shows a bucket full of water that is being whirled rapidly,
so that the water spreads out from the center. The surface of the
water forms a parabola with the equation

y =
x2

c
,

where c is a constant. Infer the units of c, find the slope of the
water’s surface, and check the units of your answer.

. Both x and y are measured in units of meters, so we have

m =
m2

units of c
.

If the units of the left and right sides are to be equal, c must have
units of meters as well.

Differentiation gives the slope of the water’s surface as

dy
dx

=
2x
c

,

where the factor of 1/c “comes along for the ride,” as with any
multiplicative constant.

Checking the units of the result, we have

m
m

=
(unitless) ·m

m
,

which checks out.

1.7.4 Operator interpretation

Sometimes the Leibniz notation gives an unwieldy, top-heavy
tower of symbols:

d
(
x2

2 + 1
7

)
dx

= x

One way to avoid this awkwardness is to revert to the “prime” no-
tation: (

x2

2
+

1

7

)′
= x
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s / The dotted line through P
and Q is a good approximation to
the tangent line through P.

But a more common solution is write the function being differenti-
ated over on the right:

d

dx

(
x2

2
+

1

7

)
= x

This can be seen simply as a typographical expedient, or it can be
given a mathematical interpretation: we can think of d

dx as meaning
“take the derivative of,” in the same way that

√
means “take the

square root of.” We call d
dx the operator describing the operation of

taking a function and giving back the function that is its derivative.
Math teachers who dislike the historical connotations of the Leibniz
notation in terms of infinitely small numbers will sometimes present
the operator interpretation as the only correct interpretation, but
such a prescription robs the student of some of the utility of the
notation, e.g., by making it impossible to do the kind of reasoning
shown in example 8.

1.8 Approximations
We saw in section 1.5.2 on p. 23 that the derivative can’t be cal-
culated as ∆y/∆x unless the derivative is constant, i.e., unless the
function’s graph is a line. In the Leibniz notation, this is

dy

dx
6= ∆y

∆x
.

But if we take two points very close together on a graph, then
the curvature doesn’t matter too much, and the line through those
points is a good approximation to the tangent line, as in figure s.
When then have the approximation

dy

dx
≈ ∆y

∆x
.

It may be of interest to use either side of this as an approximation
to the other.

1.8.1 Approximating the derivative

Suppose you can’t remember that the derivative of x2 is 2x, but
you need to find the value of the derivative at x = 1. As in figure s,
let point P be

(1.0000, 1.0000),

and let Q be the nearby point

(1.0100, 1.0201).

We then have:
dy

dx
≈ ∆y

∆x

=
1.0201− 1.0000

1.0100− 1.0000

=
0.0201

0.0100
= 2.01
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t / How accurately can we
determine the ball’s volume?

This is quite a good approximation to the exact answer, 2. If we
needed a better approximation, we could take Q even closer to P. In
reality we would use this technique in cases where we didn’t know
the exact answer, and we would then want to know how accurate
our result was. To do this, we could redo the calculation with a
smaller value of ∆x, say 0.001, and look for the most significant
decimal place that changed.

1.8.2 Approximating finite changes

Sometimes we know the derivative and want to use it as an
approximation to find out about finite changes in the variables. For
example, the Women’s National Basketball Association says that
balls used in its games should have a radius of 11.6 cm, with an
allowable range of error of plus or minus 0.1 cm (one millimeter).
How accurately can we determine the ball’s volume?

The equation for the volume of a sphere gives V = (4/3)πr3 =
6538 cm3 (about six and a half liters). We have a function V (r),
and we want to know how much of an effect will be produced on
the function’s output V if its input r is changed by a certain small
amount. Since the amount by which r can be changed is small
compared to r, it’s reasonable to apply the approximation

∆V

∆r
≈ dV

dr
,

which gives

∆V ≈ dV

dr
∆r

= 4πr2∆r.

(Note that the factor of 4πr2 can be interpreted as the ball’s surface
area.) Plugging in numbers, we find that the volume could be off
by as much as (4πr2)(0.1 cm) = 170 cm3. The volume of the ball
can therefore be expressed as 6500 ± 170 cm3, where the original
figure of 6538 has been rounded off to the nearest hundred in order
to avoid creating the impression that the 3 and the 8 actually mean
anything — they clearly don’t, since the possible error is out in the
hundreds’ place.

This calculation is an example of a very common situation that
occurs in the sciences, and even in everyday life, in which we base
a calculation on a number that has some range of uncertainty in
it, causing a corresponding range of uncertainty in the final result.
This is called propagation of errors. The idea is that the derivative
expresses how sensitive the function’s output is to its input.

The example of the basketball could also have been handled
without calculus, simply by recalculating the volume using a radius
that was raised from 11.6 to 11.7 cm, and finding the difference
between the two volumes. Understanding it in terms of calculus,
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u / Stopping distance in car
lengths, as a function of initial
speed in miles per hour. The
stopping distances were mea-
sured using professional drivers
on a track. I’ve defined a car
length as 4.8 meters, which is the
length of a Honda Accord. The
dotted line shows the traditional
rule taught in schools in the US,
one car length per 10 m.p.h. of
speed. The dashed line is the
tangent at 60 miles per hour,
which is the best linear approxi-
mation for speeds near this one.

however, gives us a different way of getting at the same ideas, and
often allows us to understand more deeply what’s going on. For
example, we noticed in passing that the derivative of the volume was
simply the surface area of the ball, which provides a nice geometric
visualization. We can imagine inflating the ball so that its radius
is increased by a millimeter. The amount of added volume equals
the surface area of the ball multiplied by one millimeter, just as the
amount of volume added to the world’s oceans by global warming
equals the oceans’ surface area multiplied by the added depth.

As another example of an insight that we would have missed if
we hadn’t applied calculus, consider how much error is incurred in
the measurement of the width of a book if the ruler is placed on the
book at a slightly incorrect angle, so that it doesn’t form an angle of
exactly 90 degrees with spine. The measurement has its minimum
(and correct) value if the ruler is placed at exactly 90 degrees. Since
the function has a minimum at this angle, its derivative is zero. That
means that we expect essentially no error in the measurement if the
ruler’s angle is just a tiny bit off. This gives us the insight that it’s
not worth fiddling excessively over the angle in this measurement.
Other sources of error will be more important. For example, is the
book a uniform rectangle? Are we using the worn end of the ruler
as its zero, rather than letting the ruler hang over both sides of the
book and subtracting the two measurements?

1.8.3 Linear approximation to a curve

Many people who, like me, learned to drive in the United States
were taught that when following another car, we should leave space
equal to one car length for every 10 miles per hour of speed. This rule
has the advantage of being easy to compute in your head while you’re
on the freeway, but figure u shows that it’s a poor approximation.
This is an example of a situation that occurs over and over again in
real life, which is that we would like to approximate a complicated
nonlinear function using a simple linear one. The derivative is the
slope of the tangent line, and the tangent line is the best possible
line to approximate a given function near a particular point.

Here is a general procedure for finding the best linear approxi-
mation to a nonlinear function:

1. Pick some point on the graph that is near the center of the
region for which we’re interested in getting a linear approxi-
mation.

2. Differentiate the function to find the slope of the tangent line
through this point.

3. Given a point on a line and the line’s slope, we can find the
equation of the line. One way to do this is to write down the
definition of the slope as ∆y/∆x.
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Ice cream Example 10
. Fred drives an ice cream truck in Deadhorse, Alaska, where
the average temperature in the summer is about 10 degrees Cel-
sius. During the long Arctic winter nights, Fred has developed a
mathematical model showing that his daily revenue y in dollars is
related to the Celsius temperature x by the equation

y = −800 + 100x − x2.

Find a useful linear approximation to this equation.

. Since the average temperature in summer is about x = 10, let’s
find the best linear approximation near this point. Differentiation
gives y ′ = 100− 2x , and plugging in x = 10 gives a slope

∆y
∆x

= 80. [slope of the tangent line]

If we plug in the value x = 10 to the equation for y itself, we find
that the point

(10, 100) [a point on the tangent line]

is the one that we’re trying to find the tangent line through. We
therefore have

y − 100
x − 10

= 80 [point-slope form of the line]

for the equation of the best linear approximation. Fred is inter-
ested in calculating his profits y , so he solves this for y to find
y = −700 + 80x . As an approximation to the true (nonlinear)
function, this is

y ≈ −700 + 80x . [slope-intercept form]
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v / A snake approximated as
a box.

1.9 More about units
In section 1.7.3 on p. 28, we briefly discussed the idea of checking
your calculus by analyzing the units of measurement. If you had a
good high school chemistry or physics course, you may have already
learned how to do this to check your algebra. If not, then you may
find it helpful to study this section, which lays out the ideas in more
detail.

Figure v shows a cute snake, along with its even cuter geomet-
rical idealization as a rectangular box. The snake has

length `, in units of meters (m)

width w, in units of meters (m),

mass M , in units of kilograms (kg).

(Some people would say “in units of length,” and “in units of mass,”
but to be more concrete I’m using the SI units listed in box 1.4 on
p. 28.)

It makes sense to manipulate these quantities in certain ways:

4w, the snake’s waistline,

w2`, its volume in cubic meters (m3),

M

w2`
, its density in kg/m3,

or
2w + ` ≤ 1.14 m,

which tells us whether this snake is legal as carry-on luggage.

But some combinations don’t make sense:

`+M can’t add meters to kilograms

w` = w2` can’t equate area to volume

cosM can’t take the cosine of a mass

Some quantities are unitless. I have two dogs, and the 2 is a
unitless 2; in general, a count is unitless. When we form a ratio
between two numbers that have the same units, the result is unitless.
For example, the rectangular snake in the figure has `/w = 12.6,
which is unitless; one way to tell that it’s unitless is that if we
enlarge or reduce the drawing, the quantities that have units grow
or shrink, but the proportions such as `/w stay the same.

The following rules apply:

1. In addition, subtraction, and comparisons, all terms must have
the same units.

2. When you multiply or divide numbers, multiply or divide their
units as well.
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w / Example 11.

3. All the functions on your calculator that go beyond grade-
school arithmetic require a unitless input and give a unitless
output. These functions include logs, exponentials, and trig
functions, and are referred to collectively as transcendental
functions (sec. 5.1.2, p. 126).

Radians aren’t units Example 11
Using the notation shown in figure b, the radian measure of the
angle θ is defined as s/r . The arc length s and radius r both
have units of meters, so by rule 2 their ratio is unitless. Therefore
radians are not really a unit. This is required by rule 3 so that we
can use them as inputs to trig functions.

Cosine is unitless Example 12
The cosine is adjacent/hypotenuse, so it’s unitless, as required
by rule 3.

Frequency Example 13
The period T of a vibration is defined as time it takes to go through
one cycle. The frequency is defined as f = 1/T , and by rule 2 it
has units of 1/seconds or s−1 (also known as Hz).

Area, or volume? Example 14
. You remember that 4πr2 is the formula either for the volume of
a sphere or for its surface area, but you can’t remember which it
is. Which one does it have to be based on units?

. The 4π is unitless. By rule 2, the expression 4πr2 thus has units
of m2, i.e., square meters, or area.

Square roots Example 15
A square root is not a transcendental function, so rule 3 doesn’t
apply to it. For example, our snake has a cross-sectional area
A = w2. We then have w =

√
A, and it’s OK to feed the square

root function a unitful input: m =
√

m2.

No units in the exponent Example 16
. We can compute w2, where w has units. Does that mean we
can also calculate 2w?

. No, because then 2w = eln(2w ) = ew ln 2, but then the input to
the exponential would have units, violating rule 3. I.e., the base-2
exponential is transcendental, just like the base-e flavor.

Radioactivity Example 17
. As a radioactive substance decays, the fraction of it that remains
after time t is given by f = e−t/k , where k is a constant. Infer the
units of k .

. By rule 3, t/k must be unitless, so k is in seconds.
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Review problems
a1 A line with slope 3 passes through the point (−7, 1). Find
an equation for the line, solving for y.

√

a2 A line passes through the points (2, 3) and (6, 5). (a) Find
the slope. (b) Write an equation for the line, solving for y.

√

a3 A line has the equation 4x−3y+1 = 0. Find its slope.
√

a4 A line has the equation ax+ by + c = 0. If x changes by an
amount ∆x, find the amount ∆y by which y changes.

√

a5 The figure shows data on the pressure p and temperature
T of the planet Jupiter, as measured by the Galileo probe in 1995.
Can p be described as a function of T? Can T be described as a
function of p? . Solution, p. 224

Pressure (in millibars, mb) versus
temperature (in degrees Kelvin,
K) of the atmosphere of Jupiter,
problem a5. For comparison, the
atmospheric pressure and tem-
perature at the earth’s surface are
about 1000 mb and 300 K. Al-
though Jupiter is in the outer so-
lar system and is in general very
cold, the temperatures in its tenu-
ous upper atmosphere are, coun-
terintuitively, very hot; this feature
of the graph is what would be re-
ferred to on earth as an “inversion
layer.” Seiff et al., J. Geophys. Re-
search 103 (1998) 22,857.

a6 Suppose that a line is expressed as an equation in the form
(. . .)x+(. . .)y+(. . .) = 0, where the (. . .) stand for constants. Under
what conditions does y fail to be a function of x?

. Solution, p. 224

a7 Let x and y be real numbers. Which of these equations make
y a function of x?

y = x y = x2 x = y2 y = x3 x = y3

. Solution, p. 224

a8 Let S = {u|u2 − 2u < 0}. Figure out what set of points is
really being described here, and rewrite this as a simpler definition
of the form S = {. . . | . . .}. . Solution, p. 224
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Problems
c1 Differentiate the following functions with respect to t:
1, 7, t, 7t, t2, 7t2, t3, 7t3. . Solution, p. 224

c2 The functions f and g are defined by

f(x) = x2 and g(s) = s2.

Are f and g the same function, or are they different?
. Solution, p. 225

c3 Let m be an amount of money. There are many examples
from business, personal finance, and government in which it makes
sense to imagine that m is a function of time, m(t). Make up an
example in which m(t) = 0 but m′(t) 6= 0. (Don’t make up an
equation, just explain a situation where this would happen and how
it would be interpreted.) . Solution, p. 225

c4 A seller offers something at a unit price P , and the quantity
of units sold is Q. Ordinarily, we expect that P and Q would be
related in some way that could be expressed by a graph, but there’s
no obvious way to decide which variable, P or Q, should be on which
axis. The cause-and-effect relationship isn’t clearly one way or the
other: a change in price could cause a change in demand, but a
change in demand could also prompt the seller to change the price.
The graph is called the demand curve.

For some unusual goods, the demand is insensitive to the price.
For example, the drug Soliris treats a genetic disease so rare that
only about 8,000 people in the U.S. have it. The price P is about
$400,000 per patient per year. Since the benefits of treatment for
these people are so great, and the cost is paid for by government or
private insurers, changing P would not change Q. (a) How would
this example look on a graph if we put P on the y axis and Q on the
x axis? What if we did it the other way around? (b) In each case,
discuss whether the graph is a function. (c) In each case, what can
you say about the derivative based on the the informal definition
given in section 1.2.1?

In problems d1-d5, a function is defined by giving an equation for y
in terms of x. Find the derivative of the function.

d1 y = 3x4 − 2x2 + x+ 1
√

. Solution, p. 225

d2 y = −7x3 + x2 − 7x− 7
√

d3 y = 2x5 + 3x4 − x3 + 137
√

d4 y = 11x11 − 4x4 + 2x− 8
√

d5 y = 3x2 + 2x− 1
√
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Problems e2-e5 are each intended to be assigned randomly to one
fourth of the students in a class.

e1 Differentiate 3z7 − 4z2 + 6 with respect to z. Check your
answer by picking an arbitrary value of z and applying the technique
described in section 1.8.1, p. 30. . Solution, p. 225

e2 Differentiate 4q2 + 4q − 1 with respect to q. Check your
answer by the same technique as in problem e1.

√

e3 Differentiate −11w3 +5w2 +6 with respect to w. Check your
answer by the same technique as in problem e1.

√

e4 Differentiate c67 − 18c2 + 987 with respect to c. Check your
answer by the same technique as in problem e1.

√

e5 Differentiate 10r10 − 6r6 + 7 with respect to r. Check your
answer by the same technique as in problem e1.

√

e6 Find three different functions whose derivatives are the con-
stant 7, and give a geometrical interpretation.

. Solution, p. 225

f1 Let the function y be defined by y(x) = px2 − qx+ r, where
p, q, and r are constants. Find y′(x).

√

f2 Let the function h be defined by h(u) = au3 − u
b + c, where

a, b, and c are constants. Find h′(u).
√
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In problems f3-f5 you will need to start by rewriting the given ex-
pressions in a form that you know how to differentiate. (If you’ve
had some previous exposure to calculus, you may already know the
product rule or chain rule. Some of these problems can be done us-
ing those rules, but they can also be done without them. If you use
them, explain that you’re doing so.)

f3 Let the function f(x) be defined by f(x) = (x + 1)(2x + 3).
Find f ′(x).

√

f4 Let the function q be defined by q(c) = (2c3)(7c). Find
q′(c).

√

f5 Let the function z be defined by z(j) = (aj)4−7
(
j
r

)2
, where

a and r are constants. Find z′(j).
√

f6 Let the function f(x) be defined by

f(x) =
xm+1

m+ 1
,

where m 6= −1 is a constant. Find f ′(x).
√

g1 Consider the function f defined by f(x) = |x|.
(a) Sketch its graph. If you’re not sure what it would look like, try
to gain insight by calculating points for a few values of x, including
values that are positive, negative, and zero.
(b) On p. 14 I gave an informal definition of the tangent line and
the derivative in terms of zooming in on a graph. Does this function
have a well-defined tangent line at x = 0? A well-defined derivative?
(c) On p. 16 I defined a special type of tangent line called a no-cut
line, and the definition requires that the no-cut line be unique, i.e.,
there is not more than one line with the given properties. Is there
a no-cut line at x = 0 for this function?

g2 Consider the function f defined as follows:

f(x) =

{
0 if x ≤ 0

x2 if x ≥ 0

(a) Sketch its graph. If you’re not sure what it would look like, try
to gain insight by calculating points for a few values of x, including
values that are positive, negative, and zero.
(b) On p. 14 I gave an informal definition of the tangent line and
the derivative in terms of zooming in on a graph. Does this function
have a well-defined tangent line at x = 0? A well-defined derivative?
(c) On p. 16 I defined a special type of tangent line called a no-cut
line, and the definition requires that the no-cut line be unique, i.e.,
there is not more than one line with the given properties. Is there
a no-cut line at x = 0 for this function?
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g3 Consider the function f defined by f(x) =
√
|x|.

(a) Sketch its graph. If you’re not sure what it would look like, try
to gain insight by calculating points for a few values of x, including
values that are positive, negative, and zero. For insight, try a very
small value of x such as 10−8; think about how f(x) compares with
x for this small x, and what this tells you about the shape of the
graph near x = 0.
(b) On p. 14 I gave an informal definition of the tangent line and
the derivative in terms of zooming in on a graph. Does this function
have a well-defined tangent line at x = 0? A well-defined derivative?
(c) On p. 16 I defined a special type of tangent line called a no-cut
line, and the definition requires that the no-cut line be unique, i.e.,
there is not more than one line with the given properties. Is there
a no-cut line at x = 0 for this function?

i1 Differentiate at2 + bt+ c with respect to t.
[Thompson, 1919] . Solution, p. 226

i2 Let the function f be defined by f(x) = 2
3x

2 + 1
5x−

5
4 . Find

the value of x for which f ′(x) = 2
3 .

√

i3 The variables u and r are related by u = 5
6r

2 − 1
7r + 8

3 . Find
the value of r that minimizes u.

√
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i4 Recall that the range of a function is the set of possible values
its output can have. Find the ranges of the following functions.

f(x) = 2x2 + 3

g(x) = −2x2 + 4x

h(x) = 4x+ x2

k(x) = 1/(1 + x2)

`(x) = 1/(3 + 2x+ x2)

m(x) = 4 sinx+ sin2 x

(For m, if you’ve forgotten your trig you may wish to review from
section 5.3, p. 128. It is possible to do this problem without knowing
how to differentiate the sine function.)

You will find it convenient to express some of your answers using
notations such as [17,∞), which is a standard way of extending
the normal notation for finite intervals (p. 15) to describe infinite
ones. This example means, as you’d imagine, the set {u|u ≥ 17}.
Although ∞ isn’t a real number, the notation gets the idea across.
The use of the ) rather than a ] is to show that there isn’t a member
of the set whose value is infinite.

Although you may be able to guess some of the answers by con-
structing a graph, that does not constitute a proof of the exact
result.

i5 Consider the following four functions:

f(x) = x2 − 2x+ π

g(u) = u18 − 2u9 + π

h(v) = ln(v2 − 2v + π)

k(w) = tan2w − 2 tanw + π

Determine the minimum value of each function.

Although you may be able to get approximations to the answers by
graphing, that does not constitute a proof of the exact result, which
is what is required here. You may, however, find it helpful to check
your exact results using graphing, e.g., on the online graphing app
at desmos.com.

If you’ve forgotten some of your precalculus mathematics, you may
wish to review trig from section 5.3, p. 128 and logarithms from
section 5.7, p. 134. It is possible to do this problem without knowing
how to differentiate the functions ln and tan; instead, reason about
how the inputs and output of the functions work, and think about
how the construction of functions h and k relates them to functions
f and g.

√

Problems 41



k1 Children grow up, but adults more often grow in the hor-
izontal direction. Suppose we model a human body as a cylinder
of height h and circumference c. The person’s body mass is given
by m = ρv, where v is the volume and ρ (Greek letter rho, the
equivalent of Latin “r”) is the density. Find dm/dc, the rate at
which body mass grows with waistline, assuing constant height and
density. Check that your answer has the right units, as in example
8 on p. 28 and section 1.9 on p. 34.

√

k2 Let t be the time that has elapsed since the Big Bang. In
that time, one would imagine that light, traveling at speed c, has
been able to travel a maximum distance ct. (In fact the distance is
several times more than this, because according to Einstein’s theory
of general relativity, space itself has been expanding while the ray of
light was in transit.) The portion of the universe that we can observe
would then be a sphere of radius ct, with volume v = (4/3)πr3 =
(4/3)π(ct)3. Compute the rate dv/dt at which the volume of the
observable universe is increasing, and check that your answer has
the right units, as in example 8 on page 28 and section 1.9 on p. 34.
Hint: We’re differentiating with respect to t, and the thing being
cubed is not just t, so this is not a form that you know how to
differentiate. Use algebra to convert it into a form that you do
know how to handle.

√

k3 Kinetic energy is a measure of an object’s quantity of mo-
tion; when you buy gasoline, the energy you’re paying for will be
converted into the car’s kinetic energy (actually only some of it,
since the engine isn’t perfectly efficient). The kinetic energy of an
object with mass m and velocity v is given by K = (1/2)mv2.
(a) As described in box 1.4 on p. 28, infer the SI units of kinetic
energy.
(b) For a car accelerating at a steady rate, with v = at, find the
rate dK/dt at which the engine is required to put out kinetic en-
ergy. dK/dt, with units of energy over time, is known as the power.
Hint: We’re differentiating with respect to t, and the thing being
squared is not just t, so this is not a form that you know how to
differentiate. Use algebra to convert it into a form that you do know
how to handle.

√

(c) Check that your answer has the right units, as in example 8 on
page 28 and section 1.9 on p. 34.

m1 Section 1.2.3 on p. 16 defines the addition and vertical
stretch properties of the derivative. If we assume that the addition
property is true, prove that the vertical stretch property must hold
for any stretch factor r that is a natural number (1, 2, 3, . . . ).

. Solution, p. 226

m2 Section 1.2.3 on p. 16 defines the constant and line properties
of the derivative. Prove that the constant property follows from the
line property.
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m3 Section 1.2.3 on p. 16 defines the addition, constant, and
vertical shift properties of the derivative. If we assume that the
addition and constant properties are true, prove that vertical shift
property must hold.

m4 An even function is one with the property f(−x) = f(x).
For example, cosx is an even function, and xn is an even function if
n is even. An odd function has f(−x) = −f(x). Use the horizontal
flip property of the derivative (p. 16) to prove that the derivative of
an even function is odd.

n1 Rancher Rick has a length of cyclone fence L with which
to enclose a rectangular pasture. Show that he can enclose the
greatest possible area by forming a square with sides of length L/4.

. Solution, p. 226

n2 Prove that the total number of maxima and minima possessed
by a third-order polynomial is at most two. . Solution, p. 226

n3 A factory produces widgets, and the cost of production for
a given year is an + bn2, where n is the number produced, a is the
basic cost of producing one widget, and b represents the fact that in
order to increase volume, the factory must take expensive steps such
as adding a night shift, paying overtime, or offering higher wages in
order to attract more and better workers. The widgets are sold at
a fixed unit wholesale price k, and there is unlimited demand.
(a) Find the optimal number of widgets that the factory should
produce.

√

(b) Check that your answer has the right units, as in example 8 on
page 28 and section 1.9 on p. 34.
(c) Interpret the case where b = 0.
(d) Interpret the case where k < a.

n4 A steel sphere of radius r is dropped into an upright cylinder
of radius b ≥ r. For a fixed value of b, find the value of r that
maximizes the amount of water that needs to be poured into the
cylinder in order to cover the sphere.

√

Problems p1-p3 are each intended to be assigned randomly to one
third of the students in a class.

p1 A circle has area a, diameter d, and radius r. Express a in
terms of r, d in terms of r, and a in terms of d. Find the derivatives
da/dr, dd/dr, and da/dd. The Leibniz notation suggests that we
should have

da

dr
=

da

dd

dd

dr
.

Is this actually true?
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p2 A sphere has volume v, diameter d, and radius r. Express v in
terms of r, d in terms of r, and v in terms of d. Find the derivatives
dv/dr, dd/dr, and dv/dd. The Leibniz notation suggests that we
should have

dv

dr
=

dv

dd

dd

dr
.

Is this actually true?

p3 An equilateral triangle has sides of length s, perimeter p,
and area a. Express a in terms of p, p in terms of s, and a in terms
of s. Find the derivatives da/ dp, dp/ds, and da/ds. The Leibniz
notation suggests that we should have

da

ds
=

da

dp

dp

ds
.

Is this actually true?

q1 As a tree grows in height h, it gains mass m, so that we have
some function m(h). If h is measured in units of meters, and m in
kilograms, what are the units of the changes ∆m and ∆h and of the
derivative dm/dh?

q2 A tank is filling with water. The volume (in cubic meters) of
water in the tank at time t (seconds) is V (t). What units does the
derivative V ′(t) have?

r1 Use the technique in section 1.8.1 to obtain a numerical
approximation to the derivative of the function y = 1/(1 − x) at
x = 0. Find an answer accurate to three decimal places.

. Solution, p. 226

r2 Use the technique in section 1.8.1 to obtain a numerical
approximation to the derivative of the function y = cos(x3) at x = 1.
Find an answer accurate to three decimal places.

√

r3 Use the technique in section 1.8.1 to obtain a numerical
approximation to the derivative of the function y = sin

√
x at x = 1.

Find an answer accurate to three decimal places.
√

r4 Use the technique in section 1.8.1 to obtain a numerical
approximation to the derivative of the function y = ecosx at x = 1.
Find an answer accurate to three decimal places.

√

r5 A function of the form U = 1/(1 + er) occurs in nuclear
physics, and its derivative is interpreted as the force acting on a
neutron or proton when it is at a distance r from the center of the
nucleus. Use the technique in section 1.8.1 to obtain a numerical
approximation to the derivative of this function at r = 1. Find an
answer accurate to three decimal places.

√
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s1 Suppose that we measure a quantity x and compute from it
y = kxn, where k is a constant and n is a natural number. Let ∆x
be an estimate of the amount of possible measurement error in x,
and let ∆y be the corresponding error estimate for the output of
the calculation.
(a) Show that if ∆x is small compared to x, then

∆y

y
≈ n∆x

x
.

(b) Vernier calipers are used to measure the length of the sides
of a square tile to a precision of 0.1%. Use the result of part a
to find the possible error in an area computed from this length.

. Solution, p. 227

s2 A hobbyist is going to measure the height to which her model
rocket rises at the peak of its trajectory. She plans to take a digital
photo from far away and then do trigonometry to determine the
height, given the baseline from the launchpad to the camera and
the angular height of the rocket as determined from analysis of the
photo. Comment on the error incurred by the inability to snap the
photo at exactly the right moment. . Solution, p. 227

s3 Joe sells square sheets of gold foil. Since gold is expensive,
the sheets are sold by area a. If the area is too small, the customer
gets upset, but if the area is too high, Joe is losing money. Therefore
he wants to make sure that the area doesn’t differ from a by more
than ∆a. In his shop, Joe marks off squares of length x.
(a) No measurement is perfectly exact. By what amount ∆x can
his length measurement be off if the resulting error in the area is to
be no more than ∆a? Use the approximation method described in
section 1.8.2 on p. 31.

√

(b) Check that your answer has the right units, as in example 8 on
page 28 and section 1.9 on p. 34.
(c) If the desired area is a = 4.000 m2, and the maximum allowable
error in area is 0.001 m2, what is the biggest error Joe can afford to
make when he marks off the length x? Express your result using an
appropriate unit or in scientific notation, not as an awkward decimal
with a string of zeroes.

√

t1 (a) Let y = xp, where the constant and p is a natural number.
Find the best linear approximation to this function for values of x
near 1.

√

(b) Use the result of part a to approximate the value of 1.000001137

without a calculator.
√
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t2 The role of examples and counterexamples in proofs was
introduced in box 1.3, p. 20. Sally claims that any function y = xn,
where n is a natural number, has y′ = 0 at x = 0. To prove this,
she gives a correct calculation of the derivative of y = x4 at x = 0.
(a) Explain why her proof is incorrect. (b) Disprove her claim by
giving a counterexample.

t3 The role of examples and counterexamples in proofs was intro-
duced in box 1.3, p. 20. The addition rule for the derivative (p. 16)
tells us that the derivative of a sum is the sum of the derivatives.
Huy proposes that the same thing holds for multiplication: that the
derivative of a product is the same as the product of the derivatives.
Disprove Huy’s proposal by giving a counterexample.
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.Box 2.1 Ideas about
proof: proof by contradic-
tion

The practice of throwing
away the square of dx shows
that many mathematicians, for
over a century, were willing
to believe in nonzero numbers
whose squares were zero. That
contradicts what you learned in
grade school, but it’s not nec-
essarily wrong. A proof has
to be based on certain assump-
tions (box 1.2, p. 16). Those
mathematicians simply didn’t
assume the same list of prop-
erties that is now standard for
the real number system (sec-
tion 1.6, p. 25).

Let’s use those assumptions
to prove that we can’t have a
nonzero x such that x2 = 0.
Suppose that such an x did ex-
ist. Then since x 6= 0, by the
multiplicative inverse property
there is a number 1/x. Taking
both sides of x2 = 0 and mul-
tiplying by 1/x gives x2/x =
0/x, or x = 0. But this contra-
dicts the original claim that x
was nonzero.

This is a proof by contra-
diction. If we assume some-
thing is true, and can then,
through valid reasoning, arrive
at mutually contradictory re-
sults, then the initial assump-
tion must have been false.

Chapter 2

Limits; techniques of
differentiation

In chapter 1 we started computing derivatives simply by appealing
to a list of geometrically plausible properties (section 1.2.3, p. 16).
These properties are true, and by taking them as axioms we were
able to prove rigorously that, for example, the derivative of x2 is 2x
(section 1.2.4, p. 17). But there are many problems that are messy
to solve by this limited toolbox of techniques, and many others for
which we need qualitatively different tools.

Historically, the way Newton and Leibniz approached the prob-
lem was as follows. Suppose we want to take the derivative of x2 at
the point P where x = 1. We already know that we can get a good
numerical approximation to this derivative by taking a second point
Q, close to P, and evaluating the slope of the line through P and Q.
(See section 1.8.1, p. 30). Now instead of picking specific numbers,
let’s just take point Q to lie at x = 1 + dx, where dx is very small.
Then the slope of the line through P and Q is

slope of line PQ =
∆y

∆x

=
(1 + dx)2 − 1

(1 + dx)− 1

=
2 dx+ dx2

dx

Now comes the crucial leap of faith, which mathematicians of later
centuries began to feel was a little too sketchy. The number dx is
supposed to be small, and when you square a small number you
get an even smaller number. Since dx is supposed to be infinitely
small, dx2 should be so small that it’s utterly unimportant, even
compared to dx. Therefore we throw away the dx2 term and find
that the slope of the tangent line is 2.

2.1 The definition of the limit
Starting in the 19th century, mathematicians became less and less
satisfied with the logical justification for this style of doing calcu-
lus. The real number system had gradually become defined in a
standardized way. It became clear that although one could have a
number system that obeyed the axioms given in section 1.6 (p. 25)
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x f(x)

3.000000 0.600000
2.500000 0.555556
2.100000 0.512195
2.010000 0.501247
2.001000 0.500125

Example 2.

and that included infinitely small numbers,1 such a system would
not be the same as the real numbers. Furthermore one would have
a problem with the procedure of treating a dx2 as if it were zero;
one can prove from those axioms that zero itself is the only number
whose square is zero (box 2.1, p. 47). For these reasons, mathemati-
cians turned to a different way of defining the derivative, by using
the new notion of a limit.

2.1.1 An informal definition

While it is easy to define precisely in a few words what a square
root is (

√
a is the positive number whose square is a) the definition

of the limit of a function runs over several terse lines, and most
people don’t find it very enlightening when they first see it. So we
postpone this momentarily and start by building up our intuition.

Definition of limit (first attempt)
If f is some function then

lim
x→a

f(x) = L

is read “the limit of f(x) as x approaches a is L.” It means
that if you choose values of x which are close but not equal to
a, then f(x) will be close to the value L; moreover, f(x) gets
closer and closer to L as x gets closer and closer to a.

The following alternative notation is sometimes used

f(x)→ L as x→ a;

(read “f(x) approaches L as x approaches a” or “f(x) goes to L is
x goes to a”.)

Example 1
If f (x) = x + 3 then

lim
x→4

f (x) = 7,

is true, because if you substitute numbers x close to 4 in f (x) =
x + 3 the result will be close to 7.

Substituting numbers to guess a limit Example 2
What (if anything) is

lim
x→2

x2 − 2x
x2 − 4

?

Here f (x) = (x2 − 2x)/(x2 − 4) and a = 2.

We first try to substitute x = 2, but this leads to

f (2) =
22 − 2 · 2

22 − 4
=

0
0

which does not exist. Next we try to substitute values of x close
but not equal to 2. The table suggests that f (x) approaches 0.5.
1For more on this topic, see section 2.9 on p. 64.
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x g(x)

1.000000 1.009990
0.500000 1.009980
0.100000 1.009899
0.010000 1.008991
0.001000 1.000000

Example 3.

a / The value of ε is imposed
on us. We have succeeded in
finding a value of δ small enough
so that the outputs of the function
do lie within the desired range. If
we can do this for every value of
ε, then the limit is L.

Substituting numbers can suggest the wrong answer. Example 3
Our first definition of “limit” was not very precise, because it said
“x close to a,” but how close is close enough? Suppose we had
taken the function

g(x) =
101 000x

100 000x + 1

and we had asked for the limit limx→0 g(x). Then substitution of
some “small values of x ,” as shown in the table, could lead us
to believe that the limit was 1. Only when you substitute even
smaller values do you find that the limit is zero!

2.1.2 The formal, authoritative definition of the limit

The informal description of the limit uses phrases like “closer
and closer” and “really very small.” In the end we don’t really
know what they mean, although they are suggestive. Fortunately
there is a better definition, i.e. one which is unambiguous and can
be used to settle any dispute about the question of whether or not
limx→a f(x) equals some number L.

Definition of the limit
We say that L is the limit of f(x) as x → a, if the following two
conditions hold:

1. The function f(x) need not be defined at x = a, but it must
be defined for all other x in some interval which contains a.

2. For every ε > 0 there exists a δ > 0 such that for all values of
x in the domain of f with |x−a| < δ, we have |f(x)−L| < ε .

(The Greek letter “δ” is lowercase delta, equivalent to the Latin “d,”
and “ε” is epsilon, which is like Latin “e.”)

Why the absolute values? The quantity |x − y| is the distance
between the points x and y on the number line, and one can measure
how close x is to y by calculating |x− y|. The inequality |x− y| < δ
says that “the distance between x and y is less than δ,” or that “x
and y are closer than δ.”

What are ε and δ? The quantity ε is how close you would like
f(x) to be to its limit L; the quantity δ is how close you have to
choose x to a to achieve this. To prove that limx→a f(x) = L you
must assume that someone has given you an unknown ε > 0, and
then find a positive δ for which x values that close to a result in
values of f that lie with the range the person has demanded. The δ
you find will depend on ε.
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Example 4
. Show that limx→5 2x + 1 = 11.

. We have f (x) = 2x + 1, a = 5 and L = 11, and the question we
must answer is “how close should x be to 5 if want to be sure that
f (x) = 2x + 1 differs less than ε from L = 11?”

To figure this out we try to get an idea of how big |f (x)− L| is:

|f (x)− L| =
∣∣(2x + 1)− 11

∣∣ = |2x − 10| = 2 · |x − 5| = 2 · |x − a|.

So, if 2|x − a| < ε then we have |f (x)− L| < ε, i.e.

if |x − a| < 1
2ε then |f (x)− L| < ε.

We can therefore choose δ = 1
2ε. No matter what ε > 0 we are

given our δ will also be positive, and if |x − 5| < δ then we can
guarantee |(2x +1)−11| < ε. That shows that limx→5 2x +1 = 11.

Discussion question

A Figure a on p. 49 shows an example where δ is small enough for
the given value of ε. What would the figure look like in a case where the
value of δ was not small enough?

B Proof by contradiction was introduced in box 2.1 on p. 47. It can be
considered as a specific mathematical version of an ancient technique of
argument called reductio ad absurdum, or reduction to asburdity, which
means to disprove something by showing that if it were true, then one
could arrive at ridiculous results. When we say, “if that’s true, then the
Pope’s not Catholic,” we’re implying that we could give a reductio ad ab-
surdum. Suppose that Johnny insists on the obvious axiomatic truths (1)
that monsters live under beds and inside closets; and (2) that monsters
come out of their hiding places when the lights are turned out. Johnny
doesn’t want to get eaten by a monster, and has therefore been sleeping
with the lights on ever since he can remember. Taking Johnny’s axioms
as valid assumptions, convince him using a reductio ad absurdum that
monsters do not eat little boys.

2.2 The definition of the derivative
The single most important application of the limit is that it gives
us a way to formalize the idea of a derivative, which we have so
far been using on an informal basis. We start from the Newton-
Leibniz approach described on p. 47, but modify it by using a limit
to get rid of the questionable procedure of discarding the square of
an infinitesimal number.

Definition of the derivative
The derivative of a function f at a point x is

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x
.

50 Chapter 2 Limits; techniques of differentiation



b / A geometrical interpreta-
tion of the expression 2∆x + ∆x2

occurring in the second line of
example 5. The area gained by
increasing the size of the square
equals the area of the two thin
strips plus the area of the small
square.

The derivative of x2, using limits Example 5
Let’s use the definition to find the derivative of x2 at x = 1. We
have

f ′(1) = lim
∆x→0

(1 + ∆x)2 − 1
∆x

= lim
∆x→0

2∆x + ∆x2

∆x
= lim
∆x→0

(2 + ∆x)

We’ve already shown in example 4 on p. 50 that this sort of limit
of a linear function is just what you would expect by plugging in to
the equation of the line, and therefore we have f ′(1) = 2.

The derivative of an exponential function, with limits Example 6
In example 3 on p. 19, we inferred using a simple geometrical
trick that the derivative of an exponential function like f (x) = 2x

must be proportional to f itself,

f ′ = kf ,

where the constant of proportionality k depends on the base,
such as 2. We can now prove the same fact using limits, and
say something about the value of the constant. Since this fact is
supposed to hold for all values of x , and k is to be the same for
any x , we can pick any convenient value for x , say x = 0. For the
derivative we have

f ′(0) = lim
∆x→0

20+∆x − 20

∆x

= lim
∆x→0

2∆x − 1
∆x

.

Since f (0) = 1, we have

k = lim
∆x→0

2∆x − 1
∆x

We can get as good an approximation to this limit as we like by
plugging in small enough values of ∆x . For example, ∆x = 10−4

gives k ≈ 0.69317, which seems to be an approximation to ln 2 =
0.69314 . . . This naturally leads us to conjecture that the deriva-
tive of bx equals (ln b)bx , and in particular that the derivative of ex

is simply ex . This is investigated further in section 5.2, p. 126.

If the limit referred to in the definition of the derivative is unde-
fined at a certain x, then the derivative is undefined there, and we
say that f is not differentiable at x. Differentiability is discussed in
more detail in section 2.8, p. 61.

We seldom evaluate a derivative by directly applying its defini-
tion as a limit. Instead, we use a variety of other more convenient
rules that follow from the definition. Some of these are the prop-
erties in section 1.2.3, p. 16. In addition, we will learn two very
important and useful rules, the product rule and the chain rule.
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c / A geometrical interpreta-
tion of the product rule.

2.3 The product rule
The idea behind the product rule is very similar to the geometrical
intuition expressed by figure b on p. 51 for the derivative of x2.
Suppose that instead of x multiplied by x to make x2, we have some
other function such as (x2 + 7)(x3), which is also the product of two
factors. Call these factors u(x) and v(x), so that the function we’re
differentiating is f(x) = u(x)v(x). Then the expression we get by
applying the definition of the derivative to f can be written in terms
of the rectangular areas in figure c as

f ′(x) = lim
∆x→0

(right strip) + (top strip) + (tiny box)

∆x

One can prove from the definition of the limit that the limit of a
sum is equal to the sum of the limits, provided that the individual
limits exist (see section 4.1, p. 95, property P3), so:

f ′(x) = lim
∆x→0

(right strip)

∆x

+ lim
∆x→0

(top strip)

∆x

+ lim
∆x→0

(tiny box)

∆x

If the functions u and v are both well-behaved at x (specifically,
if both of them are differentiable), then the “tiny box” term will
vanish upon application of the limit just as in example 5. We then
have

f ′(x) = lim
∆x→0

(right strip)

∆x
+ lim

∆x→0

(top strip)

∆x

= u′(x)v(x) + v′(x)u(x).

We have the following extremely important and useful rule for dif-
ferentiation:

Product rule
Let f = uv, where f , u, and v are all functions. Then at any point

where u and v are both differentiable,

f ′ = u′v + v′u.

The product rule for x3 Example 7
So far we have never actually proved any derivatives of powers of
x other than x2; although the proofs can be done by the methods
of ch. 1, they are tedious. These results come out much more
easily by applying the product rule. We have already proved that
the derivative of x2 was 2x . To get the derivative of x3, we can

52 Chapter 2 Limits; techniques of differentiation



simply rewrite it as the product (x2) ·(x). Applying the product rule
then gives

(x3)′ = [(x2) · (x)]′

= (x2)′ · (x) + (x2) · (x)′

= 2x · x + x2 · 1
= 3x2.

A dirty trick for finding the derivative of 1/x Example 8
How do we differentiate 1/x? We can guess the right result by
recalling that this expression can also be written as x−1. (Expo-
nents, including negative ones, will be reviewed more systemati-
cally in section 2.5, p. 56). If we then assume that the power rule
(xn)′ = nxn−1 applies to n = −1, then the result should be that the
derivative of 1/x is −x−2, or −1/x2.

But that’s only a reasonable guess, not a proof. We can prove it by
the following dirty trick. Write 1 = (x)(1/x), and then differentiate
on both sides. The left-hand side is a constant, so its derivative
is zero. Applying the product rule to the right-hand side, we get
(x)′(1/x) + (x)(1/x)′, and equating this to zero shows that indeed,
(1/x)′ = −1/x2.

2.4 The chain rule
2.4.1 Constant rates of change

In addition to the product rule, the other extremely important
rule for differentiation is the chain rule. We start with three exam-
ples that illustrate the idea but don’t require calculus.

Burning calories Example 9
. Jane hikes 3 kilometers in an hour, and hiking burns 70 calories2

per kilometer. At what rate does she burn calories?

. We let x be the number of hours she’s spent hiking so far, y the
distance covered, and z the calories spent. Then

∆z
∆x

=
∆z
∆y
· ∆y
∆x

=
(

70 cal
1��km

)(
3��km
1 hr

)
= 210 cal/hr.

Clowns on seesaws Example 10
In figure d, the clown on the left drops by ∆x , causing the mid-
dle clown to go up by ∆y . The ratio between these appears to
2Food calories are actually kilocalories, 1 kcal=1000 cal.
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e / Example 11.

f / The chain rule allows us
to differentiate expressions in
which functions occur nested in-
side other functions, like Russian
dolls.

be about −3/2 based on the lengths of the two lever arms, as
determined by the position of the fulcrum. This then causes the
right-hand clown to drop by ∆z, where ∆z/∆y is about −2. The
result is

∆z
∆x

=
∆z
∆y
· ∆y
∆x

= (−2)(−3
2

)

= 3.

d / Example 10.

Gear ratios Example 11
. Figure e shows a piece of farm equipment containing a train of
gears with 13, 21, and 42 teeth. If the smallest gear is driven by
a motor, relate the rate of rotation of the biggest gear to the rate
of rotation of the motor.

. Let x , y , and z be the angular positions of the three gears. Then

∆z
∆x

=
∆z
∆y
· ∆y
∆x

=
13
21
· 21

42

=
13
42

.

These examples all used the following relationship among three
rates of change:

∆z

∆x
=

∆z

∆y
· ∆y

∆x
(1)

Because the rates of change were stated to be constant, it was valid
to measure them with expressions of the form ∆ . . . /∆ . . ., and be-
cause the deltas were real numbers, it was valid to use the normal
rules of algebra and cancel the factors ∆y.

54 Chapter 2 Limits; techniques of differentiation



.Box 2.2 A sketch of the
technical issues behind the
chain rule

If all three derivatives in
equation (2) exist, then the
equation essentially works be-
cause the limit of a product is
the product of a limit (provided
that the limits exist); this is
property P5 of the limit, to be
discussed more formally in sec-
tion 4.1, p. 95. There are two
other technical issues to worry
about.

First, equation (1) is not
true if ∆y = 0, because we
can’t divide by zero, and if the
derivative of y with respect to
x happens to be zero some-
where, then it’s reasonable to
worry that this might be forced
upon us for a certain value of
∆x. Although we won’t prove
it here, this issue doesn’t actu-
ally cause the chain rule to fail.

The second issue is that in
equation (2), two of the lim-
its involve ∆x → 0, but one
has ∆y → 0. This turns out
not to be a problem because,
as discussed in ch. 4, a differ-
entiable function must be con-
tinuous (i.e., there are no gaps
in its graph), and therefore if,
by assumption, y is differen-
tiable as a function of x, then
y is also continuous, and there-
fore taking ∆x→ 0 also causes
∆y → 0.

2.4.2 Varying rates of change

The Leibniz notation makes it tempting to simply write down
and believe the following analogous-looking expression involving deriva-
tives:

dz

dx
=

dz

dy
· dy

dx

In problems p1-p3 on p. 43 we verified that this seemed to work.
But how do we know that this always works with derivatives? If we
define the Leibniz notation as standing for a limit, then we need to
show this:

lim
∆x→0

∆z

∆x
=

(
lim

∆y→0

∆z

∆y

)(
lim

∆x→0

∆y

∆x

)
(2)

Rather than giving a formal proof, I’ve briefly sketched in Box 2.2
the technical issues involved. These work out as our intuition sug-
gests, and we therefore have:

The chain rule
If z is a function of y, and y is a function of x, and if the derivatives
dz/dy and dy/dx exist at a certain point, then at that point,

dz

dx
=

dz

dy
· dy

dx
.

The chain rule is extremely useful in evaluating derivatives, be-
cause many of the expressions we want to differentiate have a struc-
ture in which a big formula is built out of smaller ones. For example,
in problem r1 on p. 44, we found by numerical approximation that
the derivative of the function

1

1− x
,

evaluated at x = 0, was about 1.000. The chain rule gives us an easy
way to get an exact result for any x. The structure of our formula
is like this:

In silly notation, the chain rule says:
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g / Composition of functions is
like a bucket brigade. (The work-
ers in the photo are salvaging
inventory from a warehouse after
the 2010 earthquake in Haiti.)

h / The function 1/(1 − x)
can be viewed as a rule for a
two-step computation in which
the output of the first computation
is fed through as the input to the
second stage.

Writing the boxes inside the equations is cumbersome, so let’s
call the big box z and the small one y. Then

z = 1/y and

y = 1− x,

which are both functions we know how to differentiate:
dz

dy
= −y−2 [example 8, p. 53]

dy

dx
= −1

In life, sometimes our big goals (get married and raise a family)
break down into smaller sub-goals (buy a ring, find a priest, pla-
cate the mother of the bride). The chain rule lets us apply this
divide-and-conquer strategy to differentiation. Since we know how
to differentiate z with respect to y and y with respect to x, the chain
rule lets us solve the larger problem of differentiating z with respect
to x:

dz

dx
=

dz

dy
· dy

dx

= (−y−2)(−1)

= y−2

= (1− x)−2.

Plugging in x = 0, we verify that the derivative is exactly equal to
1, in agreement with the earlier numerical calculation.

2.4.3 Composition of functions

A little more formally, we can view the chain rule as a rule for
doing calculus on functions that are built by composition of other
functions. The composition g ◦ h of functions g and h means the
function that takes an input x and gives back an output g(h(x)).
That is, we take the input x, stick it into h, take h’s output, put it
in g, and finally take g’s output.

The chain rule tells us how to differentiate a function built out of
such a composition. In terms of this notation, suppose that f(x) =
g(h(x)). Then the chain rule says that f ′(x) = g′(h(x))h′(x). Or,
in a simpler but more abstract notation, we can write (g ◦ h)′ =
(g′ ◦ h)h′.

2.5 Review: exponents that aren’t natural
numbers

In section 2.6 we will exploit the product and chain rules to prove
the rule (xn)′ = nxn−1 for all values of n that are nonzero rational
numbers. As preparation, we review in this section the basic idea of
exponentiation, and then the interpretation of exponents that aren’t
natural numbers.
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2.5.1 Basic ideas

We can represent repeated multiplication

2× 2× 2 = 8,

using the notation for exponents,

23 = 8.

Because multiplication is associative,

2× 2× 2× 2× 2× 2× 2 = 128

is the same as
(2× 2× 2)(2× 2× 2× 2),

so 27 is the same as (23)(24). In other words, multiplication is the
same as adding exponents,

bubv = bu+v. (3)

An important special case is scientific notation, which uses powers
of 10. For example, (102)(107) = 109.

2.5.2 Zero as an exponent

Suppose we compute the list of decreasing powers of a given
base, for example 23 = 8, 22 = 4, and 21 = 2. Each result is half as
big as the previous one. Therefore if we want to continue reducing
the exponent, we should clearly have 20 = 1 in order to continue
the pattern. In general, b0 = 1 for any nonzero base b. (The special
case 00 is undefined.)

2.5.3 Negative exponents

Continuing this pattern, we must have 2−1 = 1/2. In general,
negative exponents indicate the inverse of the corresponding positive
exponent.

2.5.4 Fractional exponents

Our rules for zero and negative exponents were consistent with
equation (3). We can also define fractional exponents that obey this
rule. For example, if 31/2 is a number, then equation (3) requires
that (31/2)(31/2) = 3, so an exponent 1/2 must mean the same thing
as a square root.

2.5.5 Irrational exponents

If we want to define an expression such as 2π, we can take it to
be the limit of the list of numbers 23, 23.1, 23.14, 23.141, . . .

2.6 Proof of the power rule in general
In section 1.3, p. 20, I presented the rule (xn)′ = nxn−1 for all
natural numbers n, but only explicitly proved it for n = 1 and 2.

Section 2.6 Proof of the power rule in general 57



.Box 2.3 Ideas about
proof: proof by induction

Proof by induction is a
technique for proving an infi-
nite number of facts without
using infinitely many words.
Call these facts, or proposi-
tions, P1, P2, and so on. For
example Pn could be the claim
that if we kick over the first in
an infinite chain of dominoes,
then the nth domino will fall
as well. Induction requires two
steps.

(1) We establish that P1 is
true. For example, if we kick
over the first domino, then P1

is clearly true, since kicking it
over causes it to fall. This is
called the base case.

(2) We show that if Pn−1

holds, then Pn is true as well.
For example, if domino n − 1
falls, then it will cause domino
n to fall as well.

i / Proof by induction is like
an infinite chain of dominoes. If
we topple the first domino, then
eventually every domino will fall.

A good application of the product and chain rules is to extend the
proof to all nonzero integers n and to show that it also holds for
fractional exponents.

Only n = 0 requires special treatment. Since x0 = 1, its deriva-
tive should be zero. Our rule sort of, but not quite, works here,
since it gives 0x−1, or 0/x. This is certainly zero if x 6= 0, but in
the case where x = 0 it gives 0/0, which is undefined.

2.6.1 Exponents that are natural numbers

Example 7 on p. 52 showed that the product rule can be used to
prove special cases of the power rule. Since we knew the derivative
of x2, we were able to find the derivative of x3 by rewriting it as
(x2)(x) and applying the power rule. In the same way, we can prove
the rule for any exponent n if it has already been established for
n − 1. We rewrite xn as (xn−1)(x), differentiate using the product
rule, and find:

(xn)′ = (xn−1)′(x) + (xn−1)(x)′

= (n− 1)xn−2x+ xn−1

= nxn−1

By establishing the fact for n = 1, and then proving that it must
hold for n if it holds for n − 1, we establish that it holds for all
natural numbers n. This is called proof by induction (box 2.3).

2.6.2 Negative exponents

We saw in example 8 on p. 53 that (1/x)′ = −1/x2, which was
exactly what we would have expected from applying the power rule
to the exponent −1. It is then straightforward to extend the result
to all negative integers by applying the chain rule to (xn)−1.

2.6.3 Exponents that aren’t integers

What about fractional exponents, such as x1/2, i.e., the square
root of x? We don’t know what this derivative is yet, but let’s give
it a name. Call it f , i.e., f(x) = (

√
x)′. Then

1 = x′

= (
√
x
√
x)′

= f(x)
√
x+
√
xf(x)

= 2f(x)
√
x

f(x) =
1

2
√
x

=
1

2
x−1/2

This is exactly what we would have inferred from the power rule
(xn)′ = nxn−1, with n = 1/2. A similar argument can be carried
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j / Example 12, with c1D = 1,
c2D = 9, and c3 = 1.

out for any fractional exponent, although recognizing this is not
quite the same as writing a general proof; a general proof is given
in example 8, p. 165. The generalization to irrational exponents is
deferred until example 4 on p. 135.

Economic order quantity Example 12
Here is an extremely common problem in the business world.

A retailer knows that there is a steady yearly demand D for the
widgets it sells; every year, customers buy D widgets. They need
to maintain an inventory of the product, and when they run out,
they need to buy a quantity q from their wholesaler. Ordering from
the wholesaler costs a certain amount per widget plus a certain
amount per order, and because of the per-order cost, the retailer
would prefer that the quantity of widgets q in each order be big.

The retailer also has to pay a certain amount to store all the wid-
gets in inventory. For example, if their inventory gets too big, they
may have to buy or rent a new warehouse. This is a reason not
to make q too big.

We have the following model of the retailer’s yearly costs:

C = c1D [wholesale cost of the widgets, including shipping]

+ c2
D
q

[D/q=number of orders; c2=fixed cost per order]

+ c3q [cost of storing an inventory of q widgets]

We want to minimize the function C(q), taking D, c1, c2, and c3
as constants. If q is too small, the second term dominates and
becomes large, while the same happens with the third term if q is
too big. Therefore we know that the minimum of C must occur at
some finite value of q. The function is smooth, so this minimum
must occur at a point where the derivative dC/dq is zero (section
1.5.3, p. 24). Writing 1/q as q−1 and applying the power rule, the
derivative is

dC
dq

= −c2Dq−2 + c3,

and setting this equal to zero gives

q =

√
c2D
c3

,

where only the positive square root has real-world significance.
This answer makes sense because we respond to greater de-
mand D by making bigger orders, and likewise if the fixed cost
per order c2 is high, we will make bigger orders in order to reduce
the number of orders. If the cost c3 of warehousing a widget for a
year is large (e.g., the widget is a jumbo jet), then we will order in
smaller quantities.
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2.7 Quotients
Suppose that we want to differentiate the function

1

x
.

The product rule tells us how to differentiate an expression involving
multiplication, but this one uses division. However, division by a
certain number is the same as multiplication by its multiplicative
inverse, so we can rewrite this function in a form that we know how
to differentiate. (

1

x

)′
=
(
x−1

)′
= −x−2 [power rule]

If the expression in the denominator is more complicated, we can
do the same thing, but use the chain rule as well:(

1

1 + x2

)′
=
(
(1 + x2)−1

)′
= −(1 + x2)−2(2x)

If the numerator is not just 1, then we also have to use the product
rule:(

x3

1 + x2

)′
=
(
x3(1 + x2)−1

)′
= (x3)′(1 + x2)−1 + x3

[
(1 + x2)−1

]′
[product rule]

= 3x2(1 + x2)−1 + x3
[
−(1 + x2)−2(2x)

]
=
x4 + 3x2

(1 + x2)2 [simplify]

The foregoing examples show a technique for differentiating quo-
tients that works in all cases, and this is how I do that type of
derivative. Some people, however, prefer to memorize the following
rule, which can be proved by running through the steps above for a
function f = p/q, where p and q can be any functions at all.

Quotient rule
Let f = p/q, where f , p, and q are all functions. Then at any
point where p and q are both differentiable and q 6= 0,

f ′ =
p′q − q′p

q2
.

In the examples above, the functions p and q happened to be
polynomials. A function like f that is formed in this way from the
quotient of polynomials is called a rational function.
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k / A discontinuous function.

l / The function is not differ-
entiable at x1 because it has
a kink there, and is not differ-
entiable at x2 because it has a
sudden jump.

m / Reflected light forms a
geometrical curve inside a
teacup. The curve has a kink
similar to the one at x1 in figure
l. This kink is of a special type
called a cusp, in which the two
branches are parallel where they
meet.

2.8 Continuity and differentiability
2.8.1 Continuity

Intuitively, a continuous function is one whose graph has no
sudden jumps in it; the graph is all a single connected piece. Such a
function can be drawn without picking the pen up off of the paper.
Formally, continuity is defined as follows.

A function g is continuous at a if

lim
x→a

g(x) = g(a) (4)

A function is continuous if it is continuous at every a in its domain.

In most cases, there is no need to invoke the definition explicitly
in order to check whether a function is continuous. Most of the func-
tions we work with are defined by putting together simpler functions
as building blocks. For example, let’s say we’re already convinced
that the functions defined by g(x) = 3x and h(x) = sinx are both
continuous.3 Then if we encounter the function f(x) = sin(3x),
we can tell that it’s continuous because its definition corresponds to
f(x) = h(g(x)). The composition of two continuous functions is also
continuous. Just watch out for division. The function f(x) = 1/x is
continuous everywhere except at x = 0, so for example 1/ sin(x) is
continuous everywhere except at multiples of π, where the sine has
zeroes.

2.8.2 More about differentiability

We mentioned briefly on p. 51 that a function is defined to be
differentiable or nondifferentiable at a particular point depending
on the existence of the limit referred to in the definition of the
derivative,

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x
.

Figure l shows two common reasons why a function would not be
differentiable at a certain point: because it has a kink, or because
it is discontinuous. If a function is discontinuous at a given point,
then it is not differentiable at that point.

Although differentiability implies continuity, a function can be
continuous without being differentiable; see example 13.

We seldom have to resort to limits and epsilon-delta arguments
in order to determine whether a function is differentiable at a par-
ticular point. Here are three methods that, when they apply, are
usually easier:

3The reader who has forgotten all of his/her trig is directed to the review in
section 5.3.
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n / Example 13.

o / Example 14.

p / Example 15.

1. Graph the function and apply the informal definition of the
derivative from section 1.2.1, p. 14. That is, imagine trying
to zoom in on the point of interest until the curve appears
straight, and then measuring its slope. If something goes
wrong in this process, then the function isn’t differentiable.

2. Often we deal with functions that have been defined by a for-
mula, which means building it out of other functions through
arithmetic operations and composition. If all of these func-
tions and operations are differentiable at the point of interest,
then the function is differentiable.

3. If the function f has been defined by a formula, then it will
usually be possible differentiate it using the differentiation
rules and write the result as a new formula for f ′. Often
there will be only certain specific points where the formula
for f ′ is undefined, so these are the points where f wasn’t
differentiable.

The absolute value function Example 13
. Where is the function y = |x | differentiable?

. By visualizing the graph, figure n, and applying method 1 we
can tell immediately that it’s differentiable everywhere except at
x = 0. At x = 0, there is a kink, and no matter how far we zoom
in, the kink will never look like a line.

Not differentiable when dividing by zero Example 14
. Where is the function f (x) = 1/(x − 1) differentiable?

. Let’s use method 2 above. This function can be built out of
the composition of functions as f (x) = g(h(x)), where g(x) = 1/x
and h(x) = x − 1. Both of these functions are well-behaved ev-
erywhere, except that g isn’t differentiable where it blows up at
x = 0. Therefore the function f is differentiable everywhere ex-
cept at x = 1, which is where h(x) = 0 is the input to g(x).

Differentiability of the cube root Example 15
. Where is the function y = x1/3 differentiable?

. Let’s use method 3. The power rule gives y ′ = 1
3x−2/3. This

is well defined everywhere except at x = 0, where it blows up to
infinity. Therefore y is differentiable everywhere except at x = 0.

Nondifferentiable ingredients, differentiable result Example 16
Method 2 can prove that a function is differentiable, but cannot
necessarily be used to prove it nondifferentiable. For example,
consider the function y = x5(1+1/x). The second factor blows up
to infinity at x = 0, which makes us suspect that y is not differen-
tiable there. But in fact the formula can be rewritten as y = x5+x4,
which is clearly differentiable everywhere. Although the second
factor in the original form blows up at x = 0, the first factor van-
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q / If point D is a maximum
over the interval [a, b], then f ′

equals zero at D.

ishes there so rapidly that the product also vanishes, and van-
ishes smoothly.

2.8.3 Zero derivative at the extremum of a differentiable
function

We saw in section 1.5.3, p. 24, that although a searching for a
zero derivative may be a good way to find an extremum, it doesn’t
always work. Looking at the zoo of possibilities in figure q, we see
that both of the following statements are false:

1. If a function has a local extremum, it must have a zero deriva-
tive there. (False: fails at A, E, and F.)

2. If a function has a zero derivative somewhere, that must be a
local extremum. (False: fails at H.)

In mathematical jargon, we say that a zero derivative is neither a
necessary (1) nor a sufficient (2) condition for a local extremum.

We can, however, make a more restricted statement of 1 that is
true.

Theorem
If a function f is continuous on an interval [a, b] and differen-

tiable on (a, b), and if there is a point c ∈ (a, b) for which f(c)
is a maximum or minimum in the interval, then f ′(c) = 0.

Let’s see why all the conditions are necessary. The assumption
of continuity is needed because of points like E. We need differen-
tiability because of F. We also needed to assume that c was on the
interior of the interval, since otherwise it would have been possible
to choose b so that point E lay at x = b.

Proof: We prove the case where f(c) is a maximum, as in figure
q; the other case is exactly analogous. Since f is assumed to be
differentiable, it’s differentiable at c, and since c is on the interior
of the interval, differentiability means that the derivative must have
the same value regardless of whether we approach c from the right
or from the left. (At a nondifferentiable point such as F, the two
limits could be unequal.) Let’s look at both of these limits. The
limit from the left is

lim
h↗0

f(c+ h)− f(c)

h
.

But since we assumed f(c) to be the greatest value on [a, b], the
quantity inside the limit is guaranteed to be greater than or equal
to zero. The limit exists, since we assumed differentiability, so the
limit must also be greater than or equal to zero. Similarly, the limit
from the right

lim
h↘0

f(c+ h)− f(c)

h
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must exist and be less than or equal to zero. Since the two limits
are equal, they equal zero.�

2.9 Safe handling of dy and dx
We’ve seen that although the real number system doesn’t include
infinitely big or infinitely small quantities, it can nevertheless be
extremely useful to think of a notation like dy/dx as the quotient of
two infinitely small numbers. For example, it allows us to check our
work in differentiation by checking the units of the result (example
8, p. 28), and it makes the chain rule look so obvious that there
would never be any danger of forgetting it. When the calculus was
first invented, these infinitely small numbers were referred to as
infinitesimal numbers. The idea behind the word is that just as a
decimal is one tenth, an infinitesimal is one “infinitieth.”

We now confront the question of when it’s safe to treat dy and
dx as if they were numbers. This kind of manipulation is like nuclear
energy: it can be used for good and for evil, and if you want to use it
safely, you have to know what you’re doing. In this section we lay out
some simple safety rules which, if followed, will prevent all nuclear
meltdowns. Just as we enriched the set of natural numbers to make
the rational numbers, and the rational numbers to make the reals,
we continue the march of progress by making an even larger number
system called the hyperreal numbers, which includes infinitesimals.
For a more detailed exposition at the freshman-calculus level, see
the excellent free online book by Keisler, Elementary Calculus: An
Approach Using Infinitesimals.

We start with two preliminary definitions.

Definition: Suppose that for a certain nonzero number d, we
have |d| < 1, |d| < 1/(1 + 1), |d| < 1/(1 + 1 + 1), . . . and so on for
all inequalities of this form.4 Then we say that d is infinitesimal.

Definition: Let H be a hyperreal number (which may or may
not also be a real number). Suppose that there exists some real
number r such that |H − r| is infinitesimal. Then we say that r is
the standard part of H.

Rule 1. The hyperreal numbers obey all the same elementary
axioms as the real numbers (section 1.6, p. 25).

The hyperreals numbers include at least one infinitesimal num-
ber, call it d. By rule 1, we can apply the multiplicative inverse
axiom to d, so 1/d is also a well-defined hyperreal number, and
clearly 1/d is bigger than 1, bigger than 1 + 1, and so on, so the
hyperreal number system includes both infinitely big and infinitely
small quantities.

4Cf. example 11, p. 113. For an application to economics, see rule 3, p. 218.
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It can be proved from the elementary axioms that if d is nonzero,
then 2d 6= d. Therefore the hyperreal number system includes a
variety of sizes of infinitesimals. This is important, because if all
infinitesimals were the same size, then dy/dx would always have to
equal one! It also follows from the axioms that 1/d 6= 1/(2d), so
infinite numbers come in different sizes as well. We therefore have:

Rule 2. The symbol ∞ and the term “infinity” do not stand for
any real number, and do not stand for any specific hyperreal number.
They are in fact not very useful in the context of the hyperreals.

Breaking the rules gives a nuclear meltdown Example 17
Suppose that the universe is infinite, so that there are infinitely
many animals in the universe that, like us, have two eyes. The
number of left eyes is some infinite hyperreal number H, and H is
also the number of right eyes. The total number of eyes is then

H + H = 2H.

Everything is all right, and 2H is an infinite number that happens
to be twice as big as H.

But now suppose we break rule 2 and use the symbol ∞ indis-
criminately for any positive, infinite quantity. Then we have

∞ +∞ =∞.

Applying the additive inverse axiom, we can cancel an ∞ from
each side, giving

∞ = 0,

which is absurd.

The paradox didn’t result from talking about infinite numbers. It
came from breaking one of the rules for manipulating them cor-
rectly.

Historically, one of the main sources of confusion about infinitesi-
mals was the sketchy practice of discarding the square of an infinites-
imal (p. 47). This is resolved as follows:

Rule 3. The derivative of y with respect to x is defined as the
standard part of dy/dx.

Redoing the example from p. 47 according to this rule, we have
the following calculation of the derivative of y = x2 at x = 1:

dy

dx
=

(1 + dx)2 − 1

(1 + dx)− 1

= 2 + dx

y′ = standard part of 2 + dx

= 2

Although this particular modern approach to calculus makes dy/dx
not a synonym for y′, the notational distinction is not assumed in
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.Box 2.4 Why 0! equals 1

We define 0! = 1, both be-
cause it turns out to be more
convenient in all of our appli-
cations, and for the following
logical reason.

In the more usual case
where n ≥ 1, n! is defined as
a product containing n factors.
If we start with a rubber band,
then stretch it successively by
all of these factors, we end up
stretching it by a factor of n!
over all.

In the case of n = 0, we
have no factors in our list, so
we have nothing on our list
of things to do to the rubber
band. It is left at its original
length. It has been stretched
by a factor of 1, i.e., left alone.

Note that exactly the same
logic applies to exponents, and
that’s why we also define, for
example, 70 = 1.

a general context, since they were thought of as synonyms for hun-
dreds of years.

Ideas very much like rules 1 and 3 were in fact originally pro-
posed by Leibniz,5 but not until the 1960s were they restated pre-
cisely enough to satisfy the mathematical community. In the in-
terim, there was considerable suspicion of infinitesimals (Georg Can-
tor famously referred to them as “infect[ing] mathematics” like a
“cholera-bacillus”), and today many mathematicians dislike them,
despite their logical rehabilitation, as a matter of taste.

A not-quite proof of the chain rule Example 18
The Leibniz notation for the chain rule

dz
dx

=
dz
dy
· dy

dx

makes it look as though its proof were a matter of trivial algebra:
just cancel the factors of dy . This isn’t quite valid, however, as a
rigorous proof, because the derivative is really not the quotient of
two infinitesimals but the standard part of that quotient.

A calculator for infinite and infinitesimal numbers Example 19
A web-based calculator at lightandmatter.com/calc/inf lets
you play with infinite and infinitesimal numbers. It provides one
built-in infinitesimal number d that satisfies the definition on p. 64.
The following example shows some sample calculations.

2+2

4

d+d

2d

d<1/1000

true

d>0

true

2.10 The factorial
In a number of places in this course, it will be helpful to know
about a function called the factorial. The factorial of n, notated n!,
is defined as the product of all the integers from 1 to n,

n! = 1 · 2 . . . n.

For example, 3!, read as “three factorial,” is 1 ·2 ·3 = 6. As a special
case, we define 0! to be 1 (not zero), for the reasons given in Box
2.4.

5Blaszczyk, Katz, and Sherry, “Ten misconceptions from the history of anal-
ysis and their debunking,” arxiv.org/abs/1202.4153.
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2.11 Style
Style is important. If you say true things in poor style, people will decide that you’re stupid and
ignore you. You know enough calculus to appreciate some examples.

1. Use equals signs. State what it is that you’re calculating.

wrong right
3x(x+ 4)
3x2 + 12x
6x+ 12

[3x(x+ 4)]′

= [3x2 + 12x]′

= 6x+ 12

2. The Leibniz notations d and d/dx are operations (like
√

), not numbers.

Question: Differentiate x2.
Wrong answer: d′ = 2x
Wrong answer: d/ dx = 2x

Question: Differentiate x2.
Right answer: d(x2)/ dx = 2x
Right answer: d(. . .)/ dx = 2x

3. Immediately make obvious simplifications.

wrong right
(x2 + 3)′

= 2x1 + 0
(x2 + 3)′

= 2x1 + 0 [or don’t write this at all]
= 2x

4. Simplification should usually reduce the number of symbols.

wrong right
[(x2 + 1)3]′

= 3(x2 + 1)2(2x)
= 3(x4 + 2x2 + 1)(2x) [uglification]

[(x2 + 1)3]′

= 3(x2 + 1)2(2x)
= 6x(x2 + 1)2 [simplification]

wrong right
[1/
√

1 + x]′

= [(1 + x)−1/2]′

= −1
2(1 + x)−3/2

= −1
2(1+x)

√
1+x

[uglification]

[1/
√

1 + x]′

= [(1 + x)−1/2]′

= −1
2(1 + x)−3/2 [Stop here.]

5. Don’t use a complicated technique when a simple one will do.

wrong right
x′

= (x1)′

= (1)x0

= 1

x′ = 1 [known fact]

wrong right(
1

x2+1

)′
= (1)′(x2+1)−(1)(x2+1)′

(x2+1)2 [quotient rule]

= (0)(x2+1)−(2x)
(x2+1)2

= − 2x
(x2+1)2

(
1

x2+1

)′
= [(x2 + 1)−1]′

= −2x(x2 + 1)−2 [power and chain rules]
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Review problems
a1 Compute 320143−2011.

√

a2 Compare u = 10−1010
with v = 10−10−10

. (Note that expo-
nentiation is not associative, and an expression of the form ab

c
is

interpreted as a(bc).

a3 Solve 16x = 1/2 for x.
√
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Problems
Example 2 on p. 48 demonstrates a way of guessing a limit by plug-
ging in numbers and making a table of values. Do the same thing
in problems b1-b3.

b1
lim
x→π

(π − x) tan
x

2

b2

lim
x→0

|x|√
1− cosx

(As always in this course, trig functions are assumed to take angles
in radians. Put your calculator in radian mode.)

b3
lim
x→0

x−10e−1/|x|

In example 5 on p. 51 we found the derivative of the function y(x) =
x2 by directly applying the definition of the derivative as a limit. In
problems c1-c4, apply the same brute-force technique to the given
functions.

c1 u(a) = a3 at a = 1

c2 p(j) = 1
j at j = 1

c3 t(c) = 1
c2

at c = 1

c4 s(n) = 1
1+n at n = 1

e1 Differentiate 3
√
x with respect to x. . Solution, p. 227

e2 Differentiate the following with respect to x:
(a) y =

√
x2 + 1

(b) y =
√
x2 + a2

(c) y = 1/
√
a+ x

(d) y = a/
√
a− x2

[Thompson, 1919] . Solution, p. 227
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e3 The following table shows the barometric pressure P and
average July temperature T for the summit of Mount Everest and
the city of Wenzhou, China, which is at the same latitude.

pressure (kPa) temperature ( ◦C)
Wenzhou 101 +29
Everest 38 −16

A physical model predicts the following relationship between these
two variables:

T = To + cP 2/7

Here c is a constant and To = −273 ◦C is a constant that converts
from degrees Celsius to a temperature scale based on absolute zero.
(a) Estimate c from the data at Wenzhou.

√

(b) T is a complicated nonlinear function of P , and for some pur-
poses, such as mental estimation, a linear approximation might be
more convenient to work with. Find the equation of the tangent line
to this function at the point representing the conditions at Wenzhou,
and use this equation to calculate the expected temperature at the
summit of Everest. This is quite a long extrapolation. How good
an approximation is it?

√

e4 Use the product rule to prove the vertical stretch property
of the derivative (p. 16). . Solution, p. 227

In problems g1 and g2, compute each derivative by two different
methods: (a) by multiplying out the given expression and then dif-
ferentiating, and (b) by using the product rule. Make sure that you
get the same answer by both methods.

g1 y = (x2 + x+ 1)
√
x.

√

g2 y = (x+ 5)(x3 + 1).
√
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i1 (a) Consider the function f(x) = xex, where e is the base
of natural logarithms. Use the technique described in section 1.8.1,
p. 30, to find f ′(1), to three decimal places of precision.

√

(b) In example 6, p. 51, we conjectured that the derivative of ex was
simply ex. This is discussed in greater detail in ch. 5, but for now
let’s just assume that it’s true. Given this fact, use the product rule
to differentiate the function f . Check that the result is consistent
with your answer to part a.

√

i2 We’ve established the power rule using limits, which are the
most common modern tool for defining derivatives. By this rule,
the derivative of x3 is 3x2, and evaluating this at x = 1 gives a
derivative of 3.

Chapter 2 began by showing a more old-fashioned technique for
differentiating x2 at x = 1 (p. 47). Apply this technique to x3

at x = 1, and show that it agrees with the result found above.
. Solution, p. 228

i3 Differentiate (2x+ 3)100 with respect to x.
. Solution, p. 228

i4 Differentiate (x+ 1)100(x+ 2)200 with respect to x.
. Solution, p. 228

i5 Use the chain rule to differentiate ((x2)2)2, and show that
you get the same result you would have obtained by differentiating
x8. [M. Livshits] . Solution, p. 228

i6 In section 2.4.3 on p. 56, we expressed the chain rule without
the Leibniz notation, writing a function f defined by f(x) = g(h(x)).
Suppose that you’re trying to remember the rule, and two of the
possibilities that come to mind are f ′(x) = g′(h(x)) and f ′(x) =
g′(h(x))h(x). Show that neither of these can possibly be right, by
considering the case where x has units. You may find it helpful to
convert both expressions back into the Leibniz notation.

. Solution, p. 228
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Compute the derivative of each of the functions in problems j1 and j2
by two different methods: (a) by multiplying out the given expression
and then differentiating, and (b) by using the chain rule. Make sure
that you get the same answer by both methods.

j1 y = (1 + x2)4
√

j2 y = (x2 + x+ 1)2
√

In problems k1-k7, differentiate the given function, and try to sim-
plify your answer as much as possible.

k1 c(d) = d+ 1 + (d+ 1)2
√

k2

a(b) =
b− 2

b4 + 1
√

k3

g(u) =

(
1

1 + u

)−1

√

k4 h(z) =
√

1− z2
√

k5

h(t) =
at+ b

ct+ d
(a, b, c, and d are constants.)

√

k6

p(c) =
1

(1 + c2)2

√

k7

s(m) =
m

1 +
√
m

√
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In problems m1-m1, j, k, `, and m, are constants. Calculate the
given derivatives. Simplify answers where possible.

m1
d

ds

[
(`sj + ks)m

]
(where j 6= 0 and m 6= 0)

√

m2
d

dv

(
v

jv + k

)
√

m3
d

dw

[
(`w +m)

√
jw + k

] √

m4
d

dθ

(
`

θ2 − 1

)
√

n1 Suppose that we put a stick on a table and use a ruler
to measure its length L. According to Einstein’s theory of special
relativity, if the stick is instead in motion at speed v relative to the
ruler, then we get a different, shorter length given by

M = L

√
1− v2

c2
,

where c is the speed of light. We don’t notice this effect in every-
day life because ordinary velocities are so small compared to c. (a)
Calculate dM/dv, the rate at which the stick shortens with increas-
ing speed. (b) Check the units of your answer (section 1.9, p. 34).
(c) Check that the sign of the result makes sense. (d) Discuss the
behavior of your result if v = c.

√
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The function of problem p1,
with a = 3, b = 1, and fo = 1.

n2 Suppose that a distant galaxy is moving away from us at
some fraction u of the speed of light. Then the vibration of the light
waves we receive from it is slowed down by the factor

D(u) =

√
1− u
1 + u

compared to what we would have observed if it hadn’t been in mo-
tion relative to us. This is called the Doppler effect. Compute the
derivative dD/du, which measures how sensitive the effect is to the
velocity.

√

p1 When you tune in a radio station using an old-fashioned
rotating dial you don’t have to be exactly tuned in to the right fre-
quency in order to get the station. If you did, the tuning would be
infinitely sensitive, and you’d never be able to receive any signal at
all! Instead, the tuning has a certain amount of “slop” intention-
ally designed into it. The strength of the received signal s can be
expressed in terms of the dial’s setting f by a function of the form

s =
1√

a(f2 − f2
o )2 + bf2

,

where a, b, and fo are constants. The constant b relates to the
amount of slop. This functional form is in fact very general, and
is encountered in many other physical contexts. The graph shows
an example of the kind of bell-shaped that results curve. Find the
frequency f at which the maximum response occurs, and show that
if b is small, the maximum occurs close to, but not exactly at, fo.

. Solution, p. 229

p2 Many cactuses are approximately cylindrical in shape. In
order to minimize the loss of water through evaporation, it is ad-
vantageous for a cactus to have a minimum surface area for a given
volume. Find the proportion of height to diameter that achieves
this, taking the cactus to be a cylinder with only its top and sides
exposed.

√
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p3 An atomic nucleus is made out of protons and neutrons. The
number of protons is called Z and the number of neutrons N . Figure
s on p. 76 shows a chart of all of the nuclei that have been observed
and studied to date. Most of these are unstable: they undergo
radioactive decay in a certain amount of time, and therefore are not
found in the earth’s crust, so they can only be produced artificially.

The stable nuclei are shown on the chart as black squares, and we
can see that they follow a certain curve. Unstable nuclei that lie
below and to the right of the line of stability have too many neutrons
in proportion to their protons, and they undergo a decay process in
which a neutron is converted to a proton, causing the nucleus to
move one step diagonally on the chart, as in the game of checkers.
Similarly, nuclei with too few neutrons move by diagonal steps down
and to the right. Defining A = N + Z, these decay processes keep
A constant.

In the liquid drop model, the nucleus is treated as a continuous fluid
with certain properties such as surface tension. Since the fluid is
continuous, we can pretend that N and Z are capable of taking on
any real-number values. (This is similar to the water molecules in
the reservoir on p. 14.) In this model, a nucleus has a certain energy,

E = bZ2A−1/3 +
(A− 2Z)2

A
,

where b ≈ 0.031, and for simplicity we have left out an over-all
constant of proportionality with units of energy. Let’s consider E
as a function of Z, and A as a constant. Since radioactive decay
requires the release of energy, and our radioactive decay processes
keep A constant, a nucleus will be stable if it has the value of Z that
minimizes the function E(Z).

(a) Find this stable value of Z, in terms of A and b.
√

(b) For light nuclei, we observe that the stable nuclei have about
half protons and half neutrons. Verify this from your answer to part
a.
(c) The heaviest nucleus shown as a black square on the chart is a
uranium nucleus with Z = 92 and A = 238. Verify that your answer
to part a passes close to this point.
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Problem p3.

r1 One car is driving north, along the y axis, so that at time t
its y coordinate is y = t. Another car is driving west, along the x
axis, with x coordinate x = 1− t. Initially, at t = 0, the second car
is aimed straight at the first one.
(a) Use the Pythagorean theorem to find the function r(t) giving
the distance r between the two cars at time t. Eliminate x and y
from your expression by using the equations above, so that it only
has t in it.

√

(b) Find the time at which the distance is at a minimum. (You may
find it helpful to employ the shortcut demonstrated in the solution
to problem p1.)

√
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r2 A fancy factory can’t produce anything if it has no workers to
keep it running, but on the other hand a big crowd of workers stand-
ing around in a vacant lot also can’t do anything. Businesses need
to balance their spending on labor L and the amount E invested in
capital equipment, such as machinery. In 1928, economists Charles
Cobb and Paul Douglas used macroeconomic data from the U.S. to
come up with the following model for production.

P = cLαE1−α

Here P is the amount produced, and c and α are constants. Suppose
that a business has a fixed amount of capital T , so that

L+ E = T .

(a) Use the second equation to eliminate E, and find the optimal
fraction L/T of capital that should be spent on labor. (b) Show that
your answer has the correct behavior in the special cases α = 0, 1/2,
and 1.

√

r3 A slice of pie subtending an angle θ (in radians) is cut from
a pie of radius r. (You may wish to review the definition of radian
measure, section 5.3.1, p. 128.)
(a) Find the perimeter P of the slice, i.e., the sum of the lengths of
its two straight sides plus the arc length of the curved side.

√

(b) Find the area A of the slice.
√

(c) Suppose we want to make a pie-slice shape with the minimum
possible perimeter for a fixed area. (The radius r is not fixed.)
Use your answer to part b to eliminate r from part a, and find the
perimeter as a function of A and θ.

√

(d) Find the value of θ that minimizes the perimeter, treating A as
a constant.

√
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r4 A camera takes light from an object and forms an image
on the film or computer chip at the back of the camera inside its
body. Let u be the distance from the object to the lens, and v the
distance from the lens to the image. These distances are related by
the equation

1

f
=

1

u
+

1

v
,

where f is a fixed property of the lens, called its focal length. When
we want to focus on an object at a particular distance, we have to
move the lens in or out so that u and v fulfill this equation; in an
autofocus camera this is done automatically by a small motor. Let

L = u+ v

be the distance from the object to the back of the camera’s body,
and suppose that we want to take a picture of an object as nearby
as possible, in the sense of minimizing L.
(a) Solve the first equation for v, and substitute into the second
equation to eliminate v, thereby expressing L as a function that
depends only on the variable u (and the constant f).

√

(b) Find the value of u that minimizes the function L(u).
√

(c) Find the minimum value of L.
√

Problems t1-t7 can be done using methods 1-3 on p. 62.

t1 Sketch the graph of the function

f(x) =
1

1 + |x|
by plotting a few points, including ones where x is negative, zero,
and positive. Is f differentiable at x = 0? . Solution, p. 230

t2 Let the function f be defined as f(x) = 1/ sinx, where the sine
function takes its argument in radians. Where is f discontinuous?
Where is it nondifferentiable? You do not have to evaluate the
derivative in order to answer this question, but you do need to recall
basic properties of the sine function. If you’ve forgotten your trig,
you may need to look at the review in section 5.3, p. 128.

. Solution, p. 230

t3 A cusp is a special type of kink, in which the two branches are
parallel where they meet. An example is shown in figure m on p. 61.
For which values of the exponent p does the function f(x) = |x|p
have a cusp at x = 0? For which values is it nondifferentiable?

. Solution, p. 230

t4 List any nondifferentiable points of the following functions.

f(x) = (x− 1)3/5 − (x+ 1)3/5

g(x) = (x− 2)5/3 − (x+ 2)5/3
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t5 List any nondifferentiable points of the function

h(x) =
√
x2 + x4.

t6 Find any nondifferentiable points of the function

j(x) =
1

x2 − x
.

t7 Determine the domain of the function

`(x) = x4√x,

and locate any nondifferentiable points in its domain.

u1 A certain line has the following properties: (1) It passes
through the point (0,−c), where c is a positive constant. (2) Its slope
is positive. (3) It is a tangent line to the parabola y = x2. Find the
slope of the line. Check that your result makes sense in the special
case c = 0, that it shows the correct trend as c grows, and that it
does something appropriately nasty if, contrary to assumption, c is
negative.

√

u2 A line passes through the point (0, 1), and is also tangent
to the curve y = cx3, where c is a constant. Find the x coordinate
of the point of tangency. Check that your result has the right sign
when c is positive, also makes sense when c < 0, has the correct
trend as c gets closer to zero, and does something appropriately
nasty if c = 0.

√

u3 Let the functions f and g be defined by f(x) = x2 and
g(x) = x4 +c, where c is a constant. If c = 0, then the two functions
are tangent to each other only at the origin. Find the only nonzero
value of c such that they are tangent somewhere else.

√
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Use the ε-δ definition to prove the limits in problems w1-w2. The
good news is that these limits were chosen to be the easiest possible
examples to prove directly from the definition. The bad news is that
these may feel like artificial exercises, since the functions are contin-
uous and defined at the relevant points, so that the limits could have
been more easily determined by simply plugging the number into the
formula. The reason for doing them is that they will help you to
understand the definition of the limit.

w1
lim
x→1

2x− 4 = −2

w2
lim
x→0

√
x = 0

w3 Compute

lim
x→0

x sin
1

x

and prove your result directly from the ε− δ definition. If you don’t
remember the properties of the sine function, consult section 5.3,
p. 128.

y1 Generalize the product rule from two factors to three. Cf. prob-
lem y6. . Solution, p. 230

y2 Is it true that if limx→a f(x) exists then f is continuous at
x = a?

y3 The number 1 can be defined as the smallest positive integer.
(a) Recall that rational numbers are defined as the ratios of integers,
i.e., fractions such as 2/3. Give a proof by contradiction to show that
there is no smallest positive rational number. Proof by contradiction
was introduced in box 2.1 on p. 47. (b) Suppose that someone
proposes interpreting a symbol like dx as the smallest positive real
number that exists. Assume the properties of the real numbers given
in section 1.6, p. 25. Prove that there is no such least real number.

y4 The factorial n! = 1 ·2 . . . n was introduced in sec. 2.10, p. 66,
and proof by induction in sec. 2.6.1, p. 58. Prove by induction that
n! > n2 for n ≥ 4.
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y5 Let f(x) = xn, where n is an integer greater than or equal
to 1, and suppose that we want to evaluate f ′(1) directly using
the definition of the limit, i.e., using the brute-force technique of
example 5, p. 51. This will involve multiplying out the expression
(1+∆x)n−1, after which we end up throwing away everything except
for the lowest-order nonvanishing term (i.e., the term with ∆x to
the first power). All we really need is the coefficient of this term,
which in example 5 was 2. For a particular value of n, we could just
go ahead and multiply out this expression, but suppose we would
rather prove the result for all n. This requires that we prove a
general result for the coefficient of the linear term in the expression
(1 + ∆x)n. Such a coefficient is called a binomial coefficient. Proof
by induction was introduced in section 2.6.1, p. 58. Use a proof by
induction to show that the binomial coefficient we’re talking about
equals n.

y6 Proof by induction was introduced in section 2.6.1, p. 58.
Use a proof by induction to generalize the product rule from two
factors to n factors, where n is any natural number. Cf. problem
y1.

y7 Recall from p. 60 that a rational function is the quotient of
two polynomials. Define the nastiness, N [r] of a rational function r
to be the sum of the orders of its numerator and denominator, when
it has already been simplified as much as possible. For example,

N

[
3x4 + 1

x2 − 1

]
= 4 + 2 = 6.

If we take the derivative of a rational function, the result is again
a rational function. We may get lucky and find that the result can
be simplified, but in most cases the result will be more complicated
than the original function, as measured by nastiness. Determine an
upper bound on N [r′], stated as an inequality in terms of N [r].
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a / Beer is a natural food that is
high in vitamin E.

Chapter 3

The second derivative

3.1 The rate of change of a rate of change
On p. 22 in section 1.5.1, we briefly encountered the idea of the
acceleration of an object. The acceleration is the rate of change of
velocity, while the velocity is the rate of change of position. That is,
the acceleration is the rate of change . . . of a rate of change! If that
seems like a strange concept to you, then you’re in good company.
After Newton and Leibniz invented the calculus, George Berkeley,
Bishop of Cloyne, published a brutal critique called “The analyst: a
discourse addressed to an infidel mathematician.” Berkeley wrote:

Our modern analysts are not content to consider only
the differences of finite quantities: they also consider
the differences of those differences, and the differences
of the differences of the first differences. And so on ad
infinitum.

But the velocities of the velocities, the second, third,
fourth, and fifth velocities, etc., exceed, if I mistake not,
all human understanding. The further the mind analy-
seth and pursueth these fugitive ideas the more it is lost
and bewildered.

Although some of Berkeley’s critique was in fact valid, there are
many situations where it’s perfectly natural to want to talk about
a change in the rate of change. Figure a shows beer fermenting
energetically at the Timmermans brewery in Belgium. Anyone who
has watched this delightful process has seen the same story play
itself out. A small population of dormant yeast cells is dumped
into a delicious broth of malted barley. They find themselves in
an ideal environment in which to raise children. At first the signs
of fermentation are modest: a few bubbles as the small group of
colonists starts to convert sugars to alcohol and carbon dioxide.
But by the next morning the happy flood of procreation is going
like crazy. A flood of foam is gushing out of the fermentation vessel.

In this example there is nothing more natural than to say: the
fermentation is speeding up. Let y be the amount of carbon dioxide
that has been produced so far. (We could just as well have defined
y as the amount of alcohol, but the CO2 bubbles are what we see.)
Then the derivative of y with respect to time, y′, is the rate of
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b / The functions y = 2x , x2

and 7x2.

c / The functions y = x2 and
3− x2.

d / The functions y = x3 has
an inflection point at x = 0.

change of y. When we say that fermentation has sped up, we’re
talking about y′′. At the time shown in figure a with a dotted line,
y′′ is large and positive. One way to tell this is that the slope of the
y′ graph is large and positive at this moment. In this stack of three
graphs, the slope on each graph corresponds to the value of the one
below at any given time.

In modern terminology, y′′ is referred to as the second derivative
of y.

3.2 Geometrical interpretation
The second derivative can be interpreted as a measure of the curva-
ture of the graph, as shown in figure b. The graph of the function
y = 2x is a line, with no curvature. Its first derivative is 2, and its
second derivative is zero. The function x2 has a second derivative
of 2, and the more tightly curved function 7x2 has a bigger second
derivative, 14.

A positive second derivative tells us that the function is like a
cup: it holds water. A negative second derivative says that the
function spills water, like a cup that’s been turned upside-down.
This distinction is referred to as the concavity of the function. In
figure c, the function x2 holds water. We say that it’s “concave
up,” and this corresponds to its positive second derivative. The
function 3 − x2, with a second derivative less than zero, is concave
down. Another way of saying it is that if you’re driving along a
road shaped like x2, going in the direction of increasing x, then
your steering wheel is turned to the left, whereas on a road shaped
like 3− x2 it’s turned to the right.

Figure d shows a third possibility. The function x3 has a deriva-
tive 3x2 and a second derivative 6x, which equals zero at x = 0.
This is called a point of inflection. The concavity of the graph is
down on the left side, up on the right. The inflection point is where
it switches from one concavity to the other. In the alternative de-
scription in terms of the steering wheel, the inflection point is where
your steering wheel is crossing from right to left.

Definition
A point of inflection is one at which the second derivative
changes sign.

A circle Example 1
Consider the set of all points (x , y ) at a fixed distance r from the
origin. This is a circle of radius r . Using the Pythagorean theo-
rem, we find that this set of points is defined by x2 + y2 = r2. It
is not the graph of a function, since it fails the vertical line test. If
we solve for y , we get y = ±

√
r2 − x2, and since we have both

a positive and a negative square root, there are two possible val-
ues of y . But if we arbitrarily choose the positive root, we have
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e / Example 1.

the function

y =
√

r2 − x2,

which is the equation of the semicircle lying above the x axis,
figure e.

To find the derivative y ′, we can rewrite y as (r2−x2)1/2 and apply
the power rule and the chain rule. The result is

y ′ = −x(r2 − x2)−1/2.

The second derivative is

y ′′ = −(r2 − x2)−1/2 − x2(r2 − x2)−3/2.

Let’s evaluate the second derivative at x = 0. The result is y ′′ =
−1/r . The negative sign tells us that the graph is concave down.
The absolute value of the result is 1/r , which is a measure of
the curvature of the circle; a smaller radius indicates a stronger
curvature.

When both f ′ = 0 and f ′′ = 0, the second derivative test is
inconclusive. All three of the functions in figure f have f ′(0) = 0
and f ′′(0) = 0, but we can’t tell purely from this information what
is going on. In one case it’s a point of inflection, in one it’s a local
minimum, and in one it’s a local maximum.

f / When both f ′ = 0 and f ′′ = 0,
the second derivative test is in-
conclusive.

When the second derivative test is inconclusive, we need to find
some other way to determine what’s going on. One option is graph-
ing. Another possibility is to determine whether the derivative
changes sign at the point in question. For example, the function
x4 has as its derivative 4x3, and this changes sign from negative to
positive at x = 0, indicating a local minimum.
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g / A zero derivative often,
but not always, indicates a local
extremum. Sometimes we have
a zero derivative without a local
extremum, and sometimes a local
extremum with an undefined or
nonzero derivative.

h / Example 2.

3.3 Leibniz notation
The Leibniz notation for y′′ is

d2y

dx2
.

The seemingly inconsistent placement of the exponents on the top
and bottom is actually exactly what we need if we want the units
to make sense. To see this in a concrete example, consider the
acceleration of an object expressed in terms of its position x:

a =
d2x

dt2
.

The units of x are meters, and the units of t are seconds. The
velocity dx/dt has units of meters per second, m/s. The rate at
which the velocity changes has units of meters per second per second,
m/s/s or m/s2. This is exactly what is suggested by the Leibniz
notation.

3.4 Applications
3.4.1 Extrema

When a function goes up and then smoothly turns around and
comes back down again, it has zero slope at the top. A place where
y′ = 0, then, could represent a place where y was at a maximum. Or
the function could be concave up, in which case we’d have a mini-
mum. Figure g reprises some of the possible types of extrema alluded
to briefly in section 1.5.3, p. 24. By testing the second derivative,
we can distinguish among cases B, D, and H, which represent, re-
spectively, a minimum, a maximum, and a point of inflection. The
test will not distinguish between D, which is a global maximum, and
G, which is only a local maximum.

The second derivative test applied to order quantity Example 2
In example 12 on p. 59 we analyzed a situation in which a retailer,
when it runs out of inventory, orders a quantity q of widgets from
the wholesale supplier. The result was that the retailer’s yearly
cost was given by a function of a certain form, of which an exam-
ple is

C = 1 +
9
q

+ q.

By setting the first derivative

dC
dq

= −9q−2 + 1

equal to zero and solving for q, we find q = 3. This could be a
minimum (good), a maximum (bad), or an inflection point. One

86 Chapter 3 The second derivative



i / Example 3.

way to tell is by applying the second derivative test. The second
derivative is

d2C
dq2 = 18q−3.

Plugging in q = 3, we find d2C/dq2 = 18/27, which is positive.
Therefore the function is concave up at q = 3, and this is indeed a
minimum. (In fact, this particular function happens to be concave
up everywhere. We only defined it for q > 0, because a nega-
tive q doesn’t make sense in this context — the retailer doesn’t
produce widgets, and can’t sell them to the wholesaler. For any
positive value of q, the second derivative is positive.)

One minimum and one maximum Example 3
. Locate all extrema of the function

y = x−1 + x .

Use the second derivative test to determine which are maxima
and which are minima, and check your result by graphing. Are
these global extrema, or only local ones?

. This function is undefined at x = 0 because x−1 blows up as
x approaches zero. However, if there are extrema that occur at
x 6= 0, where the function is smooth, we should be able to find
them by looking for places where y ′ = 0. We have

y ′ = −x−2 + 1,

which equals zero at x = ±1. These points could be maxima,
minima, or points of inflection. The second derivative is

y ′′ = 2x−3.

Plugging in x = +1 gives a positive result, so this is a minimum.
Plugging in x = −1 gives a negative result, which means that it’s
a maximum.

The graph, figure i, verifies the results of the second derivative
test. The function is odd, so it makes sense that we get a maxi-
mum and a minimum that are symmetrically disposed. The graph
also reveals that the extrema we’ve found are only local ones.
The function has no global extrema.
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j / Example 4.

k / Isaac Newton (1642-1727).

A fruitless search Example 4
. Locate all local extrema of the function

y = x3 − 6x2 + 12x .

Use the second derivative test to determine which are maxima
and which are minima.

. The function is smooth everywhere, so any extrema must be at
points where the derivative

y ′ = 3x2 − 12x + 12

vanishes. The quadratic formula tells us that there is only one
such point, x = 2. The second derivative

y ′′ = 6x − 12

is zero at this point, so it’s a point of inflection, not a maximum
or minimum. This function has no local extrema. (The original
function can in fact be rewritten as y = (x − 2)3 + 8, which gives
more insight. It’s simply the function y = x3, shifted 2 units to the
right and 8 units up.)

3.4.2 Newton’s second law

The ancient Greek philosopher Aristotle claimed that force was
required in order to create motion, and this seemed reasonable to
Europeans for a thousand years afterward, since it was in accord
with everyday experience. Although Aristotle didn’t use equations,
we can imagine putting his theory into mathematical form like this:

F = m
dx

dt
[“Aristotle’s law of motion”]

Here F is the force exerted on an object, x is the object’s position,
and m is a constant of proportionality, which would presumably be
a measure of the object’s size, mass, or inertia.

Aristotle was wrong. What he didn’t understand was that fric-
tion is a force as well. When objects “naturally” slow down, it’s not
because that’s their automatic tendency but rather because friction
is acting. The moon doesn’t experience any friction as it orbits the
earth, so it doesn’t slow down at all.

Isaac Newton, who was also one of the inventors of the calculus,
gave a correct account in the form of an equation now known as
Newton’s second law:

F = m
d2x

dt2
[Newton’s second law]

A force causes an acceleration, not a velocity. In Newton’s second
law, F represents the sum of all the forces acting on the object of
interest. For example, when you drive on the freeway at constant
speed, your acceleration is zero. This is because the total force
acting on your car is zero. The forward force generated by the tires’
traction on the road is canceled out by backward forces such as air
resistance.
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l / Indifference curves are con-
cave up.

m / Discussion question A.

3.4.3 Indifference curves

The concept of an indifference curve was introduced in example
2, p. 18. To recapitulate briefly, the person whose indifference curve
is drawn in figure l is equally happy having the combination of beer
and sushi represented by any point on the curve. A very common
assumption in economics is that indifference curves always have y′′ >
0. This means that once you have a lot of something, you value it
less. The large, negative slope at point P in figure l means that this
person already has plenty of beer, and would trade a lot of beer for
a small amount of sushi. The small negative slope at Q indicates
the opposite.

When an indifference curve has y′′ = 0, it’s a line. This indicates
that each of the two commodities is a perfect substitute for the
other. For example, most people don’t care whether they buy an
airline ticket from one airline or another.

Discussion question

A Figure m shows a person throwing a ball straight up in the air, with
the corresponding graphs drawn below for the height x and velocity v as
functions of time. True or false: at the top of the motion, the ball is at rest,
so it has no motion; you can’t have acceleration without motion, so the
ball’s acceleration equals zero at the top.

3.5 Higher derivatives
When we take the derivative of a function f , the derivative f ′ is
itself a function, so it made sense to apply the same operation again
and find the second derivative f ′′. We can continue in this way.
The derivative of the second derivative is called the third derivative,
written f ′′′, and so on.

The nth derivative of f is denoted f (n). Thus

f (0) = f , f (1) = f ′, f (2) = f ′′, f (3) = f ′′′, . . . .

Leibniz’ notation for the nth derivative of y = f(x) is

dny

dxn
= f (n)(x).

Jerk and damage Example 5
Higher derivatives are often useful; for example, you will need

them in your second-semester calculus course in order to com-
pute Taylor series, which are often used in approximating func-
tions. There are not many examples, however, in which f (n) has a
direct, intuitive interpretation for n > 2. The best example I know
of is the following for n = 3.

It’s very common for a mechanical system to be damaged by vi-
bration. For example, when a human runs, the impact of the foot
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on the ground causes a shock wave to travel up the leg, and run-
ners frequently suffer from injuries as a result. When a machine
shop cuts metal, it’s possible for the whole setup to start vibrating
violently, and if the lathe or mill isn’t shut down promptly, the result
can be serious damage to the work or the machine.

Mathematically, what is the variable that measures how likely dam-
age is to occur in these examples? The motion of an object is
described using its position as a function of time, x(t). If x is
a constant, then the object is sitting still and clearly no damage
can result, so this suggests taking a derivative. But if x ′ is con-
stant, we also expect no damage. This derivative measures the
velocity, and velocity doesn’t relate to force, acceleration x ′′ does
(Newton’s second law, section 3.4.2, p. 88). Even an accelera-
tion, however, does not necessarily lead to damage. When your
body is subject to a steady acceleration, it just feels like a steady
pressure, or perhaps, depending on the direction of the accel-
eration, an increase in your weight. A steady acceleration will
never cause an object to shake or vibrate. Such an effect can
only happen if the third derivative x ′′′ is nonzero. This quantity is
sometimes called the “jerk.” Cf. example 3, p. 159.

Two examples Example 6
If f (x) = x2 − 2x + 3 and g(x) = x/(1− x) then

f (x) = x2 − 2x + 3 g(x) =
x

1− x

f ′(x) = 2x − 2 g′(x) =
1

(1− x)2

f ′′(x) = 2 g′′(x) =
2

(1− x)3

f (3)(x) = 0 g(3)(x) =
2 · 3

(1− x)4

f (4)(x) = 0 g(4)(x) =
2 · 3 · 4
(1− x)5

...
...

All further derivatives of f are zero, but no matter how often we
differentiate g(x) we will never get zero. Instead of multiplying the
numbers in the numerator of the derivatives of g we left them as
“2 ·3 ·4.” A good reason for doing this is that we can see a pattern
in the derivatives, which would allow us to guess what (say) the
10th derivative is, without actually computing ten derivatives:

g(10)(x) =
2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10

(1− x)11 .

In section 1.7 we introduced a variation on the Leibniz notation
called the operator notation, as in

d(x3 − x)

dx
=

d

dx
(x3 − x) = 3x2 − 1.

90 Chapter 3 The second derivative



For higher derivatives one can write

d2y

dx2
=

d

dx

d

dx
y =

(
d

dx

)2

y

Be careful to distinguish the second derivative from the square of
the first derivative. Usually

d2y

dx2
6=
(
dy

dx

)2

!
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Problem b1.

Problem c4.

Problems
a1 Find the second derivative of 3z4 − 4z2 + 6
with respect to z. . Solution, p. 231

a2 Find the second derivative of 4q3 + 3q2 + 4q − 1
with respect to q.

√

a3 Find the second derivative of −11w3 + 5w2 + 6
with respect to w.

√

a4 Find the second derivative of c67 − 18c2 + 987
with respect to c.

√

a5 Find the second derivative of 10r10 − 6r6 + 7
with respect to r.

√

b1 (a) Use the graph to visually estimate the location of the
inflection point of the function

y =
1

x
+ x1/3.

(b) Use calculus to find the point exactly.
√

c1 Locate any points of inflection of the function x(t) = t3 + t2.
Verify by graphing that the concavity of the function reverses itself
at this point. . Solution, p. 231

c2 Functions f and g are defined on the whole real line, and
are differentiable everywhere. Let s = f + g be their sum. In what
ways, if any, are the extrema of f , g, and s related?

. Solution, p. 231

c3 (a) Consider a function of the form f(x) = xp, where p could
be any real number. For what values of p is f ′′(0) well defined?
Note that there are some special cases where the whole function f ′′

vanishes identically.
(b) Repeat part a for the following function.

g(x) =

{
0 for x ≤ 0

xp for x > 0
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c4 A blimp of mass m is initially at rest, and then the pilot
turns on the propellers. The propellers gradually speed up, and
while they’re speeding up, the force accelerating the blimp is given
by F = kt, where k is a constant.
(a) If time is measured in units of seconds (s), mass in kilograms
(kg), and force in kilogram-meters/second2 (kg·m/s2) infer the units
of k (section 1.9, p. 34).
(b) Show that there is a function of the form x = ctp that satisfies
Newton’s second law, determine the constants c and p, and substi-
tute these to find x(t).
(c) Check that the units of your answer to part b make sense.

√

c5 Suppose that f is an even function, and g is odd. What can
you say about f ′′ and g′′? (Cf. problem m4, p. 43.)

c6 Suppose we have a list of numbers x1, . . . xn, and we wish to
find some number q that is as close as possible to as many of the
xi as possible. To make this a mathematically precise goal, we need
to define some numerical measure of this closeness. Suppose we let
h = (x1 − q)2 + . . . + (xn − q)2, which can also be notated using
Σ, uppercase Greek sigma, as h =

∑n
i=1(xi − q)2. Then minimizing

h can be used as a definition of optimal closeness. (Why would we
not want to use h =

∑n
i=1(xi − q)?) Prove that the value of q that

extremizes h is the average of the xi, and use the second derivative
test to prove that the extremum is a minimum.

c7 In problem p1 on p. 74, I presented a bell-shaped graph with
a minimum at f = 0 and a maximum at a nonzero f . Actually, for
large enough values of b, the global maximum is at f = 0. Find the
smallest value of b for which is happens.

√

c8 The equation

2x

x2 − 1
=

1

x+ 1
+

1

x− 1

holds for any value of x for which both sides are defined. (There is a
general method, called the method of partial fractions, for rewriting
a rational function such as the left-hand side in terms of a sum of
simpler functions as in our right-hand side.) Compute the third
derivative of f(x) = 2x/(x2 − 1) by using either the left or right
hand side (your choice) of the equation.

√

In problems e1-e3, compute the first, second, and third derivatives
of the given functions.

e1 f(x) = (x+ 1)4
√

e2 g(x) = (x2 + 1)4
√

e3 h(x) =
√
x− 2

√

In problems g1-g6, find the derivatives of 10th order of the given
function. (The problems have been chosen so that after doing the
first few derivatives in each case, you should start seeing a pattern
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that will let you guess the 10th derivative without actually computing
10 derivatives.) You will find it convenient in most of these prob-
lems to express your results in terms of the notation n! = 1 · 2 . . . n
introduced in sec. 2.10, p. 66. The problems are in increasing order
of difficulty.

g1 f(x) = x12 + x8
√

g2 g(x) = 1/x
√

g3 h(x) = 12/(1− x)
√

g4 k(x) = 1/(1− 2x)
√

g5 `(x) = x/(1 + x)
√

g6 m(x) = x2/(1− x)
√

g7 Find f ′(x), f ′′(x) and f (3)(x) if

f(x) = 1 + x+
x2

2
+
x3

6
+
x4

24
+

x5

120
+

x6

720
.

√

g8 Proof by induction was introduced in section 2.6.1, p. 58.
Use induction to prove that

dn+1

dxn+1
xn = 0

if n ≥ 0 is an integer.

Suggestion: To get an idea of what’s going on, calculate the deriva-
tive for the first few values of n. Then formulate a convincing ex-
planation of what’s going on. Then find a way to reduce case n to
case n− 1, and formulate a proof by induction.

g9 Consider the function

f(x) =
1

1− x
.

If we calculate f (n)(0), we seem to get n! (see sec. 2.10, p. 66 for the
notation and the special case 0! = 1).

Proof by induction was introduced in section 2.6.1, p. 58. Use in-
duction to prove that f (n)(0) = n!.
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Chapter 4

More about limits; curve
sketching

4.1 Properties of the limit
In ch. 2 we did very few direct computations of limits using the
epsilon-delta definition. Epsilon-delta proofs are hard work, and by
building up a more sophisticated set of tools we can usually avoid
having to apply the epsilon-delta definition directly.

4.1.1 Limits of constants and of x

If a and c are constants, then

lim
x→a

c = c (P1)

and
lim
x→a

x = a. (P2)

4.1.2 Limits of sums, products and quotients

Let F1 and F2 be two given functions whose limits for x→ a we
know,

lim
x→a

F1(x) = L1, lim
x→a

F2(x) = L2.

Then

lim
x→a

(
F1(x) + F2(x)

)
= L1 + L2, (P3)

lim
x→a

(
F1(x)− F2(x)

)
= L1 − L2, (P4)

lim
x→a

(
F1(x) · F2(x)

)
= L1 · L2 (P5)

Finally, if limx→a F2(x) 6= 0,

lim
x→a

F1(x)

F2(x)
=
L1

L2
. (P6)

In other words the limit of the sum is the sum of the limits, etc.
One can prove these laws using the definition of the limit, but we
will not do this here. However, I hope these laws seem like common
sense: if, for x close to a, the quantity F1(x) is close to L1 and
F2(x) is close to L2, then certainly F1(x) +F2(x) should be close to
L1 + L2.
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Example 1
In this example we compute several limits, building up from simple
examples to more complicated ones.

First let’s evaluate limx→2 x2. We have

lim
x→2

x2 = lim
x→2

x · x

=
(

lim
x→2

x
)
·
(

lim
x→2

x
)

by (P5)

= 2 · 2 = 4.

Similarly,

lim
x→2

x3 = lim
x→2

x · x2

=
(

lim
x→2

x
)
·
(

lim
x→2

x2) (P5) again

= 2 · 4 = 8,

and, by (P4)

lim
x→2

x2 − 1 = lim
x→2

x2 − lim
x→2

1 = 4− 1 = 3,

and, by (P4) again,

lim
x→2

x3 − 1 = lim
x→2

x3 − lim
x→2

1 = 8− 1 = 7,

Putting all this together, we get

lim
x→2

x3 − 1
x2 − 1

=
23 − 1
22 − 1

=
8− 1
4− 1

=
7
3

because of (P6). To apply (P6) we must check that the denomi-
nator (“L2”) is not zero. Since the denominator is 3, this was all
right.

The limit of a square root Example 2
. Find limx→2

√
x .

. Of course, you would think that limx→2
√

x =
√

2 and you can
indeed prove this using δ & ε. But is there an easier way? There
is nothing in the limit properties which tells us how to deal with
a square root, and using them we can’t even prove that there is
a limit. However, if you assume that the limit exists then the limit
properties allow us to find this limit.

The argument goes like this: suppose that there is a number L
with

lim
x→2

√
x = L.

Then property (P5) implies that

L2 =
(

lim
x→2

√
x
)
·
(

lim
x→2

√
x
)

= lim
x→2

√
x ·
√

x = lim
x→2

x = 2.
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a / The sign function.

In other words, L2 = 2, and hence L must be either
√

2 or −
√

2.
We can reject the latter because whatever x does, its square root
is always a positive number, and hence it can never “get close to”
a negative number like −

√
2.

Our conclusion: if the limit exists, then

lim
x→2

√
x =
√

2.

The result is not surprising: if x gets close to 2 then
√

x gets close
to
√

2.

4.2 When limits fail to exist
In example 2 we worried about the possibility that a limit limx→a g(x)
actually might not exist. This can actually happen, and in this sec-
tion we’ll see a few examples of what failed limits look like. First
let’s agree on what we will call a “failed limit.”

If there is no number L such that limx→a f(x) = L, then we
say that the limit limx→a f(x) does not exist.

The sign function near x = 0 Example 3
The “sign function” is defined by

sign(x) =


−1 for x < 0
0 for x = 0
1 for x > 0

Note that “the sign of zero” is defined to be zero. But does the
sign function have a limit at x = 0, i.e. does limx→0 sign(x) exist?
And is it also zero? The answers are no and no, and here is why:
suppose that for some number L one had

lim
x→0

sign(x) = L,

then since for arbitrary small positive values of x one has sign(x) =
+1 one would think that L = +1. But for arbitrarily small negative
values of x one has sign(x) = −1, so one would conclude that
L = −1. But one number L can’t be both +1 and −1 at the same
time, so there is no such L, i.e. there is no limit.

lim
x→0

sign(x) does not exist.

In examples like this one, it is possible to define a one-sided limit;
see section 4.3.1.

Section 4.2 When limits fail to exist 97



b / Example 4.

The “backward sine” Example 4
Figure b shows the “backward sine” function f (x) = sin(π/x). Con-
template its limit as x → 0:

lim
x→0

sin
(π

x
)
.

When x = 0 the function f (x) is not defined, because its definition
involves division by x . What happens to f (x) as x → 0? First, π/x
becomes larger and larger (“goes to infinity”) as x → 0. Then,
taking the sine, we see that sin(π/x) oscillates between +1 and
−1 infinitely often as x → 0. This means that f (x) gets close to
any number between −1 and +1 as x → 0, but that the function
f (x) never stays close to any particular value because it keeps
oscillating up and down. The limit fails to exist, but for a different
reason than in example 3.

Trying to divide by zero using a limit Example 5
The expression 1/0 is not defined, but what about

lim
x→0

1
x

?

This limit also does not exist. Here are two reasons:

It is common wisdom that if you divide by a small number you get
a large number, so as x ↘ 0 the quotient 1/x will not be able to
stay close to any particular finite number, and the limit can’t exist.

“Common wisdom” is not always a reliable tool in mathemati-
cal proofs, so here is a better argument. The limit can’t exist,
because that would contradict the limit properties (P1) · · · (P6).
Namely, suppose that there were an number L such that

lim
x→0

1
x

= L.

Then the limit property (P5) would imply that

lim
x→0

(1
x
· x
)

=
(

lim
x→0

1
x
)
·
(

lim
x→0

x
)

= L · 0 = 0.

On the other hand 1
x · x = 1 so the above limit should be 1! A

number can’t be both 0 and 1 at the same time, so we have a
contradiction. The assumption that limx→0 1/x exists is to blame,
so it must go.
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4.2.1 Using limit properties to show a limit does not exist

The limit properties tell us how to prove that certain limits exist
(and how to compute them). Although it is perhaps not so obvious
at first sight, they also allow you to prove that certain limits do not
exist. Example 5 shows one instance of such use. Here is another.

Property (P3) says that if both limx→a g(x) and limx→a h(x)
exist then limx→a g(x) + h(x) also must exist. You can turn this
around and say that if limx→a g(x) +h(x) does not exist then either
limx→a g(x) or limx→a h(x) does not exist (or both limits fail to
exist).

For instance, the limit

lim
x→0

1

x
− x

can’t exist, for if it did, then the limit

lim
x→0

1

x
= lim

x→0

(1

x
− x+ x

)
= lim

x→0

(1

x
− x
)

+ lim
x→0

x

would also have to exist, and we know limx→0
1
x doesn’t exist.

4.3 Variations on the theme of the limit
Not all limits are “for x→ a”. Here we describe some variations on
the concept of limit.

4.3.1 Left and right limits

When we let “x approach a” we allow x to be larger or smaller
than a, as long as x “gets close to a”. If we explicitly want to study
the behavior of f(x) as x approaches a through values larger than
a, then we write

lim
x↘a

f(x) or lim
x→a+

f(x) or lim
x→a+0

f(x) or lim
x→a,x>a

f(x).

All four notations are commonly used. Similarly, to designate the
value which f(x) approaches as x approaches a through values below
a one writes

lim
x↗a

f(x) or lim
x→a−

f(x) or lim
x→a−0

f(x) or lim
x→a,x<a

f(x).

The precise definition of these “one-sided” limits goes like this:

Definition of right- and left-limits
Let f be a function. Then the right-limit notation

lim
x↘a

f(x) = L. (1)
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means that for every ε > 0 one can find a δ > 0 such that

a < x < a+ δ =⇒ |f(x)− L| < ε

holds for all x in the domain of f .

The definition of a left-limit is exactly analogous. When we say

lim
x↗a

f(x) = L, (2)

we mean that for every ε > 0 one can find a δ > 0 such that

a− δ < x < a =⇒ |f(x)− L| < ε

holds for all x in the domain of f .

The following theorem tells you how to use one-sided limits to
decide if a function f(x) has a limit at x = a.

Theorem
The two-sided limit lim

x→a
f(x) exists if and only if the two one-

sided limits

lim
x↘a

f(x), and lim
x↗a

f(x)

exist and have the same value.

4.3.2 Limits at infinity

So far we have defined the limit of a function f(x) as x gets
closer and closer to some finite value. It can also be of interest to
let x become “larger and larger” and ask what happens to f(x). If
there is a number L such that f(x) gets arbitrarily close to L if one
chooses x sufficiently large, then we write

lim
x→∞

f(x) = L

(“The limit for x going to infinity is L.”) We have an analogous
definition for what happens to f(x) as x becomes very large and
negative: we write

lim
x→−∞

f(x) = L

(“The limit for x going to negative infinity is L.”)

Here are the precise definitions:

Definitions of limits at infinity
Let f(x) be a function which is defined on an interval x0 < x <∞.
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If there is a number L such that for every ε > 0 we can find an A
such that

x > A =⇒ |f(x)− L| < ε

for all x, then we say that the limit of f(x) for x→∞ is L.

Similarly, let f(x) be a function which is defined on an interval
−∞ < x < x0. If there is a number L such that for every ε > 0 we
can find an A such that

x < −A =⇒ |f(x)− L| < ε

for all x, then we say that the limit of f(x) for x→ −∞ is L.

These definitions are very similar to the original definition of the
limit in section 2.1 on p. 47. Instead of δ which specifies how close
x should be to a, we now have a number A that says how large
x should be, which is a way of saying “how close x should be to
infinity” (or to negative infinity).

But although these definitions are similar to the original one,
they are not quite the same. Note that there is no real number
called ∞, and therefore we can’t just take the definition of limx→a
and substitute ∞ for a. (Cf. rule 2 on p. 65.)

c / The value of A is large enough
for the given ε. The graph could
represent the dying vibration of a
gong as a function of time. Be-
cause we can find such an A for
every ε, the vibration dies out to
zero as time approaches infinity.

The limit of 1/x Example 6
The larger x is, the smaller its reciprocal, so it seems natural that
1/x → 0 as x → ∞. To prove that limx→∞ 1/x = 0, we apply the
definition to f (x) = 1/x , L = 0.

For a given ε > 0, we need to show that∣∣∣∣1x − L
∣∣∣∣ < ε for all x > A (3)

provided we choose the right A.
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How do we choose A? A is not allowed to depend on x , but it may
depend on ε.

Let’s decide that we will always take A > 0, so that we only need
consider positive values of x . Then (3) simplifies to

1
x
< ε

which is equivalent to

x >
1
ε

.

This tells us how to choose A. Given any positive ε, we will simply
choose

A = the larger of 0 and
1
ε

Then we have | 1x − 0| = 1
x < ε for all x > A, so we have proved

that limx→∞ 1/x = 0.

The properties of the limit given in section 4.1, p. 95, also apply
to limits at infinity. As with limits at finite x, it is usually more con-
venient to calculate limits by using these properties than by direct
application of the definition.

A rational function Example 7
A rational function is the quotient of two polynomials:

R(x) =
anxn + · · · + a1x + a0

bmxm + · · · + b1x + b0
. (4)

The following trick allows us to evaluate the limit of any such func-
tion at infinity.

For example, let’s compute

lim
x→∞

3x2 + 3
5x2 + 7x − 39

.

The trick is to factor x2 from top and bottom. You get

lim
x→∞

3x2 + 3
5x2 + 7x − 39

= lim
x→∞

x2

x2
3 + 3/x2

5 + 7/x − 39/x2 (algebra)

=
limx→∞(3 + 3/x2)

limx→∞(5 + 7/x − 39/x2)
(limit properties)

=
3
5

.

At the end of this computation, we used the limit properties (P∗) to
break the limit down into simpler pieces like limx→∞ 39/x2, which
we can directly evaluate; for example, we have

lim
x→∞

39/x2 = lim
x→∞

39 ·
(

1
x

)2

=
(

lim
x→∞

39
)
·
(

lim
x→∞

1
x

)2

= 39 ·02 = 0.

The other terms are similar.
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d / A telephone wire sags by
an amount h.

Another rational function Example 8
Compute

lim
x→∞

2x
4x3 + 5

.

We apply the same trick as in example 7 and factor x out of the
numerator and x3 out of the denominator. This leads to

lim
x→∞

2x
4x3 + 5

= lim
x→∞

( x
x3

2
4 + 5/x3

)
= lim

x→∞

( 1
x2

2
4 + 5/x3

)
= lim

x→∞

( 1
x2

)
·
(

lim
x→∞

2
4 + 5/x3

)
= 0 · 2

4

= 0.

4.3.3 Limits that equal infinity

Figure d shows a telephone wire strung between two poles, which
sags by some amount h in the middle. By increasing the tension T in
the wire, we can reduce the sag. That is, the necessary tension T is
some function T (h). There is a story, almost certainly apocryphal,
to the effect that a small-town mayor considered the sagging wires
unsightly, and instructed the public works department to tighten
them up enough so that they wouldn’t sag at all.

It can be shown that the function T (h) is approximately given
by the equation

T =
k

h
,

where k is a constant.1 When I ask students what happens to this
equation when we plug in h = 0, I always get a chorus of “unde-
fined!” This shows good mathematical training — division by zero
is indeed undefined — but doesn’t give any real insight into what
will go wrong when the workers try to carry out the mayor’s plan.
If we make h smaller and smaller T will get bigger and bigger. By
making h sufficiently small, we can make T arbitrarily large. The
important insight here is that a quantity like 1/0 isn’t just unde-
fined, it’s undefined because it’s infinity, and infinity isn’t a real
number. If the workers actually try to make h = 0, they will simply
have to tighten the wires so much that the wires break.

Another way of putting this is that the limit limh→0 T (h) fails
to exist. Although it’s true that the limit doesn’t exist, we can be
more descriptive about the reason that it doesn’t. It’s a limit that
doesn’t exist because it equals infinity.

1The value of k is WL/8, where W is the weight of the wire and L is the
horizontal length. The approximation is good if h is small compared to L.
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e / The function 1/x behaves
badly near x = 0.

Consider the limit

lim
x→0

1

x
.

As x decreases to x = 0 through smaller and smaller positive values,
its reciprocal 1/x becomes larger and larger. We say that instead of
going to some finite number, the quantity 1/x “goes to infinity” as
x↘ 0. In symbols:

lim
x↘0

1

x
=∞. (5)

Likewise, as x approaches 0 through negative numbers, its reciprocal
1/x drops lower and lower, and we say that 1/x “goes to −∞” as
x↗ 0. Symbolically,

lim
x↗0

1

x
= −∞. (6)

The limits (5) and (6) are not like the normal limits we have been
dealing with so far. Namely, when we write something like

lim
x→2

x2 = 4

we mean that the limit actually exists and that it is equal to 4. On
the other hand, since we have agreed that ∞ is not a number (see
p. 65), the meaning of (5) cannot be to say that “the limit exists
and its value is ∞.”

Instead, when we write

lim
x→a

f(x) =∞ (7)

for some function y = f(x), we mean, by definition, that the limit
of f(x) does not exist, and that it fails to exist in a specific way: as
x → a, the value of f(x) becomes “larger and larger,” and in fact
eventually becomes larger than any finite number.

The language in that last paragraph shows you that this is an
intuitive definition, at the same level as the first definition of limit
we gave in section 2.1.1, p. 48. It contains the usual suspect phrases
such as “larger and larger,” or “finite number” (as if there were
any other kind.) A more precise definition involving epsilons can be
given, but in this course we will not go into this much detail.

When a function is going to blow up at a certain point, there are
two common behaviors. The first is the one shown in figure e for 1/x,
where the limit is +∞ on one side and −∞ on the other. If a limit
is to be more than a one-sided limit, we want it to have the same
value on the left and right. In this example that doesn’t happen,
so only the one-sided limits can be described as being positive- or
negative-infinite:

lim
x↘0

1

x
= +∞

lim
x↗0

1

x
= −∞

lim
x→0

1

x
can’t be described as +∞ or −∞
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f / The function 1/x2 blows
up near x = 0, but in a different
way than 1/x ; it approaches
positive infinity on both sides.

The function 1/x2, figure f, exhibits the other frequently encoun-
tered behavior. Here we have a positive blowup on both sides, so it
isn’t just the one-sided limits that can be described.

lim
x↘0

1

x2
= +∞

lim
x↗0

1

x2
= +∞

lim
x→0

1

x2
= +∞

As a final comment on infinite limits, it is important to realize
that (7) is not a normal limit, and you cannot apply the limit rules
to infinite limits. Here is an example of what goes wrong if you try
anyway.

Trouble with infinite limits Example 9
If you apply the limit properties to limx↘0 1/x =∞, then you could
conclude

1 = lim
x↘0

x · 1
x

= lim
x↘0

x × lim
x↘0

1
x

= 0×∞ = 0,

because “anything multiplied with zero is zero.”

After using the limit properties in combination with this infinite limit
we reach the absurd conclusion that 1 = 0. The moral of this story
is that you can’t use the limit properties when some of the limits
are infinite.

4.4 Curve sketching
4.4.1 Sketching a graph without knowing its equation

The concepts of calculus, such as derivatives, limits, curvature,
and concavity, can guide us in analyzing the behavior of a function
even when we don’t know a formula for the function. In economics,
for example, these concepts are used heavily even though real-world
data can essentially never be described by a formula. This subsec-
tion presents four examples in which we can use these concepts to
sketch a function based on our understanding of how the function
should behave in real life.

The time to pay off a loan

Most people will end up borrowing money at some point in their
lives, whether it’s credit card debt, a mortgage, a loan to buy a car,
or a cash advance from a payday loan company. One of the warning
signs that you may be walking into an exploitative situation is if
the person trying to sell you the loan emphasizes the low monthly
payment. Suppose that you’re borrowing $10,000 to buy a car, and
the monthly interest rate is 1%. Let p be the monthly payment,

Section 4.4 Curve sketching 105



g / The time required to pay
off a loan, as a function of the
monthly payment.

h / The Laffer curve.

and T the time required in order to pay off the loan. To understand
what’s going on here, you want to be able to visualize the graph of
T as a function of p. One fairly tedious way to do this would be to
find the equation of the function, take a piece of graph paper and
plot points. Another method would be to use an expensive graphing
calculator. But your knowledge of calculus gives you a method that
provides more insight with less work.

Clearly the smaller the payment, the longer it will take to pay
off the loan. This tells us that T (p) is a decreasing function; its
derivative will always be negative.

If p is large, then you will pay off the loan so quickly that no
significant amount of interest accrues. Therefore at large values of
p, we will have T ≈ ($10, 000)/p. This tells us that limp→∞ T = 0.
The graph of T will approach the horizontal axis more and more
closely as p gets bigger and bigger. We say that the function T (p)
has a horizontal asymptote at zero.

Finally, what happens if p is small? Remember, interest on the
loan is accruing at a rate of 1% monthly, or $100 every month. It
may sound like a good deal if you’re offered this loan with a low
monthly payment of $101, but if you take the loan and always make
the minimum payment, then the principal on the loan will only go
down by $1 every month. You will die of old age before you pay
off the car. We can therefore tell that limp↘$100 T = ∞. This is a
vertical asymptote on the graph.

Figure g shows what the graph must look like.

The Laffer curve

This example, a famous one, also has to do with money. In 1974,
economist Arthur Laffer presented the following argument about
taxes to politicians Dick Cheney and Donald Rumsfeld, sketching
the resulting graph on a paper napkin. Consider the government’s
tax revenue as a function of the tax rate. Clearly if the tax rate is
zero, the government gets zero revenue. Most people would assume
that the function was a purely increasing one, since raising the tax
rate would always garner the government more money.

But, Laffer said, that isn’t so. Imagine that the tax rate was
100%, so that the government confiscated all of everyone’s earnings.
Nobody would have any incentive to work, so they would stop work-
ing, they would earn no taxable income, and revenue would drop to
zero. Laffer sketched a graph like figure h on a paper napkin for Ch-
eney and Rumsfeld. There should be some intermediate tax rate,
he told them, that would produce the maximum revenue. Later,
when Ronald Reagan became president, he cut taxes on the the-
ory that the US was already on the right-hand side of the “Laffer
curve,” so that, counterintuitively, the lower taxes would produce
higher revenue. The results were not as Laffer had promised; the av-
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i / Altitude as a function of
time for a skydiver.

j / A rock-climbing anchor.

erage annual budget deficit during the Reagan administration was
$240 billion, compared to $57 billion during the preceding Carter
administration.

In calculus terms, our analysis of this function is an example of a
result called Rolle’s theorem, p. 117. The idea is that if the function
is smooth, then we expect its derivative to be continuous. If the
derivative is positive on the left and negative on the right, then it
must be zero at some intermediate point. This would be the point
at which the function was maximized.

Skydiving

Figure i shows a skydiver’s altitude as a function of time. Early
in the motion, soon after the person jumps out of the plane, the
only significant force is gravity, and the person falls with constant
acceleration (section 1.5.1, p. 22). The drop relative to the initial
position equals (1/2)at2, which is the equation of a parabola.

But as the downward (negative) velocity increases, the upward
force of air friction gets stronger and stronger. In the opposite limit
of t → ∞, the force of air friction gets closer and closer to being
strong enough to cancel the force of gravity. In this limit, Newton’s
second law (section 3.4.2, p. 88) predicts an acceleration of zero.
An acceleration of zero corresponds to constant velocity, so that the
graph asymptotically approaches a line whose slope is the velocity.

This graph demonstrates two mathematical properties. It has
a y-intercept, which is the initial altitude. It also has an oblique
asymptote, i.e., an asymptotic line that is neither horizontal nor
vertical.

A rock-climbing anchor

For safety, rock climbers and mountaineers often wear a climbing
harness and tie in to other climbers on a rope team or to anchors
such as pitons or snow anchors. When using anchors, the climber
usually wants to be protected by more than one, both for extra
strength and for redundancy in case one fails. Figure j shows such
an arrangement, with the climber hanging from a pair of anchors
forming a “Y” at an angle θ. The usual advice is to make θ < 90 ◦;
for large values of θ, the stress placed on the anchors can be many
times greater than the actual load L, so that two anchors are actually
less safe than one.

Consider the stress on the anchor S as a function of θ. For
physical reasons similar to those discussed in the example of the
telephone wire (section 4.3.3, p. 103), S must approach infinity as
θ approaches 180 degrees; no matter how tight the anchor strands
are made, the carabiner (hook) at the center will never be pulled up
quite as high as the anchors.
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k / Sketching y ′ and y ′′ given
the graph of y .

At θ = 0, we can see that each anchor strand will support half
the load. The y-intercept of the graph equals L/2.

We can gain further insight by extending the range of possible
values for θ to include negative angles. Physically, this corresponds
to bringing the anchor strands past one another and swapping the
roles of the two anchors. Since the physical setup is symmetrical,
the function S(θ) must have the property S(θ) = S(−θ), i.e., it is
an even function. It might seem pointless to discuss this symmetry,
but it tells us something important. An argument identical to the
one in section 1.2.4, p. 17, tells us that based on this symmetry, the
derivative S′ must equal zero at θ = 0. This means that for small
values of θ, the strain on the anchor will be very nearly the same
as for θ = 0, i.e., hardly any greater than half the load. Thus any
small value of θ is about equally good, but very large values could
be a deadly mistake.

4.4.2 Sketching f ′ and f ′′ given the graph of f

In figure k we revisit the example of fermenting beer (section
3.1, p. 83). (Feel free to mark your place in the book and make
a trip to the fridge before continuing.) The top panel of the graph
would probably have been the easiest to sketch starting from scratch.
Clearly the amount of CO2 produced starts off at zero, it rises, and
it must eventually flatten out and approach a horizontal asymptote,
since the yeast use up all their food and can’t produce any more.
This kind of vaguely S-shaped curve is in fact encountered in many
situations, and is often referred to as a “yeast curve.”

Now suppose we know y and we want to find y′ and y′′. The
basic concept is that the slope of each graph in the stack gives the
value of the graph below it. The slope of the tangent line to the y
graph at time A is small and positive, while the slope at B is larger
and positive. Therefore the values of y′ at these times must be small
and positive, then larger and positive. At time C, the slope of the
y graph is as great as it will ever be. Therefore the y′ graph has a
maximum there. The slope of y gets smaller at D and still smaller
at E, so the value of y′ must taper off correspondingly.

Now that we’ve sketched the graph of y′, we can continue the
process and construct its derivative, y′′. At time C the slope of the
y′ graph is zero, so the value of the y′′ graph is zero; this is a point
of inflection. At times earlier than C the slope of y′ is positive, while
at times later than C it’s negative. Therefore we must have y′′ > 0
before C and y′′ < 0 after.

We can also relate the properties of the y′′ graph directly to those
of the y graph. The second derivative is a measure of curvature, and
its sign indicates concavity. The y graph is concave up before C and
concave down after. This matches up with the signs of y′′.
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Discussion question

A Figure l shows three stacks of graphs, each of which is supposed
to represent the position, velocity, and acceleration of an object. Explain
how each set of graphs contains inconsistencies, and fix them.

l / Discussion question A.

4.4.3 Sketching a graph given its equation

If we have an equation defining a function, then the following
procedure is often a fairly efficient way of sketching its graph. Often
we are especially interested in finding the function’s local maxima
and minima, including the absolute or global maxima and minima.
That is, the absolute maximum is the greatest value ever attained
by the function, and similarly for the absolute minimum.

1. Find all solutions of f ′(x) = 0 in the interval [a, b]: these are
called the critical or stationary points for f .

2. Find the sign of f ′(x) at all other points.

3. Each stationary point at which f ′(x) actually changes sign is
a local maximum or local minimum. Compute f(x) at each
stationary point.

4. Compute the values of the function f(a) and f(b) at the end-
points of the interval.

5. The absolute maximum is attained at the stationary point or
the boundary point with the highest value of f ; the absolute
minimum occurs at the boundary or stationary point with the
smallest value.

If the interval is unbounded, then instead of computing the values
f(a) or f(b), you should instead compute limx→±∞ f(x).
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m / The sign of the derivative
changes at A and B.

As an example, let’s sketch the graph of the rational function

f(x) =
x(3− 4x)

1 + x2
.

By looking at the signs of numerator and denominator we see that

f(x) > 0 for 0 < x < 3
4

f(x) < 0 for x < 0 and also for x > 3
4 .

We compute the derivative of f :

f ′(x) =
−3x2 − 8x+ 3

(1 + x2)2 .

Hence f ′(x) = 0 if and only if

−3x2 − 8x+ 3 = 0,

and the solutions to this quadratic equation are −3 and 1/3. These
two roots will appear several times, and it will shorten our formulas
if we abbreviate

A = −3 and B = 1/3.

To see if the derivative changes sign we factor the numerator and
denominator. The denominator is always positive, and the numera-
tor is

−3x2 − 8x+ 3 = −3

(
x2 +

8

3
x− 1

)
= −3(x−A)(x−B).

Therefore

f ′(x)


< 0 for x < A

> 0 for A < x < B

< 0 for x > B

It follows that f is decreasing on the interval (−∞,A), increasing
on the interval (A,B) and decreasing again on the interval (B,∞)
(figure m). Therefore

A is a local minimum, and B is a local maximum.

Are these global maxima and minima?

Since we are dealing with an unbounded interval we must com-
pute the limits of f(x) as x→ ±∞. We find

lim
x→∞

f(x) = lim
x→−∞

f(x) = −4.

Since f is decreasing between −∞ and A, it follows that

f(A) ≤ f(x) < −4 for −∞ < x ≤ A.

110 Chapter 4 More about limits; curve sketching



o / A cannonball is fired hori-
zontally, and hits the water at
y = 0.

Similarly, f is decreasing from B to +∞, so

−4 < f(x) ≤ f(B) for B < x <∞.

Between the two stationary points the function is increasing, so

f(A) ≤ f(x) ≤ f(B) for A ≤ x ≤ B.

From this it follows that f(x) has a global minimum when x = A =
−3 and has a global maximum when x = B = 1/3.

n / The graph of f (x) = x(3 −
4x)/(1 + x2).

4.5 Completeness
4.5.1 The completeness axiom of the real numbers

Calculus is the study of rates of change (differentiation) and
how change accumulates (integration, which we haven’t encountered
yet). What changes is always a function, and the function takes an
input value that belongs to its domain and gives back an output that
belongs to its range. The domain and range could in principle be
sets of integers, rational numbers, real numbers, complex numbers,
or hyperreal numbers (section 2.9, p. 64). These number systems
all share many of the same properties, but just as the ocean is the
natural setting for a pirate story, there is a sense in which the real
numbers are the natural setting in which to do calculus. Throughout
this book, without specifically commenting on it so far, we’ve been
considering only functions that take real-number inputs and give
back real-number outputs: real functions.

What’s so special about real functions? We can define functions
whose inputs and outputs are, say, integers, and such functions are
of interest in many fields of mathematics. But real functions are
especially well suited to describing rates of change. As an example,
the graph in figure o shows the function f(x) = 2 − x2. Let’s say
this represents the arc of a cannon-ball shot off of a cliff into the
ocean, where a y coordinate of 0 represents the surface of the water.
Our geometrical intuition tells us that if the ball starts above the
water, and later on ends up below it, then there must be some point
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p / 1. The sets P and Q are
separated on the number line so
that every point in P is to the left
of every point in Q. By the com-
pleteness axiom, a number like
z exists. 2. By the completeness
axiom, the curve f (x) = 2 − x2

must intersect the axis. The point
of intersection is z =

√
2. The

completeness axiom doesn’t hold
for the rational numbers, and we
can see that here because z is
an irrational number.

at which it enters the water. In other words, if the graph of the
function f cuts across the line y = 0, then there must be a point at
which they coincide.

But if we consider a set of numbers more restricted than the
real numbers, this may not happen. For example, suppose we take
f to be a function whose inputs and outputs are rational numbers.
Recall that a rational number is any number that can be expressed
as an integer divided by another integer, e.g., the fraction 2/3. But
the place where our cannonball crosses sea level has x =

√
2, which

is not a rational number. This example shows that the graphs of two
rational-number functions can cut across one another without ever
touching! This offends our intuition about rates of change, since
we expect that if we change a variable smoothly from one value to
another, it should visit every value in between.

What is the special ingredient, the secret sauce that allows the
real number system to avoid such paradoxical results as the one
about the cannonball? It seems that the reals are somehow more
densely packed on the number line than the rationals, but how do
we define this density property in mathematical terms? It can’t be
any of the elementary properties of the reals (section 1.6, p. 25),
since the rationals also satisfy all of those properties. We need to
add a new axiom, which is called the completeness axiom.

One possible way of stating such an axiom is the following.

Completeness axiom
Let P and Q be sets of numbers such that every number in P is
smaller than every number in Q. Then there exists some number z
such that z is greater than or equal to every number in P, but less
than or equal to any number in Q.

As an example, let P be the set of all numbers x such that x2 < 2,
and Q the set of x such that x2 ≥ 2. Then the number z would have
to be

√
2, which shows that the rationals are not complete. The

reals are complete, and the completeness axiom can serve as one of
the fundamental axioms of the real numbers.
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The completeness axiom is of a fundamentally different char-
acter than the elementary axioms. The elementary axioms make
statements such as “for any number x, . . . ” or “for any numbers x
and y, . . . ” The completeness axiom says “for any sets of numbers
P and Q, . . . ”

Every decimal is a real number Example 10
Consider the infinite decimal

3.141592 . . . ,

which is the decimal expansion of π. We can use the complete-
ness axiom to prove that this is a real number. Let P be the list
of rational numbers given by {3, 3.1, 3.14, 3.141, . . .}. Let Q be
the set of rational numbers that are larger than every number in
P. Then the real number whose existence is asserted by the com-
pleteness axiom is exactly π. Similar reasoning shows that any
decimal corresponds to some real number (which can be shown
to be unique). (Note, however, that the same real number can
have more than one decimal expansion. For example, the infinite
repeating decimals 1.000 . . . and 0.999 . . . both equal 1.)

The Archimedean property Example 11
The Archimedean principle states that there is no positive real

number that is less than 1/1, less than 1/(1 + 1), less than 1/(1 +
1 + 1), and so on.2 In other words, it says that there are no
real numbers that are infinitely small, but still greater than zero.
The Archimedean property can be proved from the completeness
property. For suppose, to the contrary, that we did have such a
real number. Then it would be less than 1/10, so its first decimal
place would be 0. It would also be less than 1/100, so its second
decimal place would also be zero. Continuing in this way, we find
that the decimal expansion of such a number must be 0.000 . . .,
with the zeroes repeating forever. But this is the decimal expan-
sion of zero, and we already know that every decimal expansion
corresponds to a unique real number. Therefore our number is
zero, and this is a contradiction, since we assumed that it vio-
lated the Archimedean principle, which refers to a positive real
number.
2Cf. section 2.9, p. 64. For an application to economics, see rule 3, p. 218.
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q / The intermediate value
theorem states that if the func-
tion is continuous, it must pass
through y3.

r / The function x − cos x
constructed in example 13.

4.5.2 The intermediate and extreme value theorems

The following two theorems can be proved from the completeness
property and the elementary properties of the reals, but we will not
give the proofs here.

The intermediate value theorem

Intuitively, the intermediate value theorem says that the real
numbers aren’t susceptible to paradoxes like the cannonball paradox
described above. Or, we can say that if you are moving continuously
along a road, and you get from point A to point B, then you must
also visit every other point along the road; only by teleporting (by
moving discontinuously) could you avoid doing so. More formally,
the theorem says this:

Intermediate value theorem
If y is a continuous real-valued function on the real interval
from a to b, and if y takes on values y1 and y2 at certain points
within this interval, then for any y3 between y1 and y2, there
is some real x in the interval for which y(x) = y3.

Example 12
. Show that there is a solution to the equation 10x + x = 1000.

. We expect there to be a solution near x = 3, where the function
f (x) = 10x + x = 1003 is just a little too big. On the other hand,
f (2) = 102 is much too small. Since f has values above and
below 1000 on the interval from 2 to 3, and f is continuous, the
intermediate value theorem proves that a solution exists between
2 and 3. If we wanted to find a better numerical approximation
to the solution, we could do it using Newton’s method, which is
introduced in section 7.2.

Example 13
. Show that there is at least one solution to the equation cos x =
x , and give bounds on its location.

. This is what’s known as a transcendental equation, and no
amount of fiddling with algebra and trig identities will ever give
a closed-form solution, i.e., one that can be written down with
a finite number of arithmetic operations to give an exact result.
However, we can easily prove that at least one solution exists,
by applying the intermediate value theorem to the function f (x) =
x − cos x . The cosine function is bounded between −1 and 1, so
f must be negative for x < −1 and positive for x > 1. By the in-
termediate value theorem, there must be a solution in the interval
−1 ≤ x ≤ 1. The graph, r, verifies this, and shows that there is
only one solution.
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s / Example 14.

Supply and demand Example 14
Figure s shows two graphs representing the supply and demand
of some good on a free market. The function D(p) shows the
quantity that buyers would willingly buy at unit price p. Normally
D is a decreasing function: if the price goes up, people don’t buy
as much. (But cf. problem c4, p. 37.) The function S(p) shows the
quantity that the seller would willingly offer if the unit price was p.
Often S is an increasing function. For example, Boeing might only
be able to produce more passenger jets by paying their workers
overtime, which would create a cost that they would pass on to
their customers.

Suppose that, as in the example shown in the figure, D starts
out higher than S on the left, but ends up lower than S on the
right. Then we expect geometrically that if the curves are contin-
uous, they must cross at some point. This can be proved using
the same technique as in example 13. We construct a function
f (p) = S(p) − D(p), which goes from negative to positive. By
the intermediate value theorem, there must be some point where
f = 0, meaning that S = D. This crossing point is the free-market
equilibrium.

The intermediate value theorem holds for real numbers, but in
fact neither the price nor the quantity is free to have any real-
number value. For example, Boeing can’t sell half an airplane.
In some cases this might mean that the free-market equilibrium
defined by S = D would not exist. An example might be the Con-
corde, a supersonic passenger jet, which flew from 1969 to 2003.
The nonexistence of the market for this plane today may indicate
that the supply and demand curves now cross at a quantity that
is greater than 0 and less than 1, which is not a possible free-
market equilibrium because the planes can only be sold in whole
numbers.

Example 15
. Prove that every odd-order polynomial P with real coefficients
has at least one real root x , i.e., a point at which P(x) = 0.

. Example 13 might have given the impression that there was
nothing to be learned from the intermediate value theorem that
couldn’t be determined by graphing, but this example clearly can’t
be solved by graphing, because we’re trying to prove a general
result for all polynomials.

To see that the restriction to odd orders is necessary, consider
the polynomial x2 + 1, which has no real roots because x2 > 0 for
any real number x .

To fix our minds on a concrete example for the odd case, consider
the polynomial P(x) = x3 − x + 17. For large values of x , the
linear and constant terms will be negligible compared to the x3
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t / The function x − sin 1/x .

term, and since x3 is positive for large values of x and negative
for large negative ones, it follows that P is sometimes positive
and sometimes negative. Therefore by the intermediate value
theorem P has at least one root.

This argument didn’t depend much on the specific polynomial P
chosen as an example. The fact that P was positive for large x
and negative for large negative x followed merely from the fact
that P was of odd order. Therefore the result holds for all polyno-
mials of odd order.

Example 16
. Show that the equation x = sin 1/x has infinitely many solutions.

. This is another example that can’t be solved by graphing; there
is clearly no way to prove, just by looking at a graph like t, that the
function f (x) = x−sin 1/x crosses the x axis infinitely many times.
The graph does, however, help us to gain intuition for what’s going
on. As x gets smaller and smaller, 1/x blows up, and sin 1/x
oscillates more and more rapidly. The function f is undefined
at 0, but it’s continuous everywhere else, so we can apply the
intermediate value theorem to any interval that doesn’t include 0.

We want to prove that for any positive u, there exists an x with
0 < x < u for which f (x) has either desired sign. Let n be an
even integer such that n > 10 and also πn > 1/u. Then clearly
f (x) is negative at x = 1/(πn + π/2) < u, since sin 1/x = 1 and x
is small. Similarly, f (x) is positive at x = 1/(πn + 3π/2) < u. This
establishes the desired result.

The extreme value theorem

We’ve seen that that locating maxima and minima of functions
may in general be fairly difficult, because there are so many differ-
ent ways in which a function can attain an extremum: e.g., at an
endpoint, at a place where its derivative is zero, or at a nondifferen-
tiable kink. The following theorem allows us to make a very general
statement about all these possible cases, assuming only continuity.

Extreme value theorem
If f is a continuous real-valued function on the real-number

interval defined by a ≤ x ≤ b, then f has maximum and
minimum values on that interval, which are attained at specific
points in the interval.

Let’s first see why the assumptions are necessary. If we weren’t
confined to a finite interval, then y = x would be a counterexample,
because it’s continuous and doesn’t have any maximum or minimum
value. If we didn’t assume continuity, then we could have a function
defined as y = x for x < 1, and y = 0 for x ≥ 1; this function never
gets bigger than 1, but it never attains a value of 1 for any specific
value of x. If we didn’t assume a real function, then we could have,
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u / Rolle’s theorem.

v / The mean value theorem.

for example, the function f(x) = (x2 − 2)2 defined on the rational
numbers, which would never attain the minimum value of 0 because√

2 isn’t a rational number.

. Example 17
Find the maximum value of the polynomial P(x) = x3 + x2 + x + 1
for −5 ≤ x ≤ 5.

. Polynomials are continuous, so the extreme value theorem guar-
antees that such a maximum exists. Suppose we try to find it by
looking for a place where the derivative is zero. The derivative is
3x2 + 2x + 1, and setting it equal to zero gives a quadratic equa-
tion, but application of the quadratic formula shows that it has no
real solutions. It appears that the function doesn’t have a max-
imum anywhere (even outside the interval of interest) that looks
like a smooth peak. Since it doesn’t have kinks or discontinuities,
there is only one other type of maximum it could have, which is a
maximum at one of its endpoints. Plugging in the limits, we find
P(−5) = −104 and P(5) = 156, so we conclude that the maximum
value on this interval is 156.

4.5.3 Rolle’s theorem and the mean-value theorem

On p. 106, in the example of the Laffer curve from economics,
we got a preview of the following intuitively appealing theorem.

Rolle’s theorem
Let f be a function that is continuous on the interval [a, b]

and differentiable on (a, b), and let f(a) = f(b). There there
exists a point x ∈ (a, b) such that f ′(x) = 0.

Proof: By the extreme value theorem, f attains its maximum
and minimum values in [a, b]. If both of these are at endpoints, then
f is a constant function, and the theorem holds trivially. Suppose
instead that at least one of these extrema is on the interior of the
interval. Then by the theorem given in section 2.8.3, f ′ is zero at
that point, and the theorem also holds.�

Rolle’s theorem can be straightforwardly generalized to the fol-
lowing.

Mean value theorem
Let f be a function that is continuous on the interval [a, b] and
differentiable on (a, b). There there exists a point x ∈ (a, b)
such that

f ′(x) =
f(b)− f(a)

b− a
,

meaning that the derivative equals the average (mean) rate of
change of the function between the endpoints of the interval.

“Mean” is just a fancy word for “average.” In general, it’s a mistake
to try to calculate a rate of change without calculus, using ∆y/∆x,
unless the rate of change is constant. The mean value theorem says
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that just as a broken clock is right twice a day, there is at least one
point where ∆y/∆x gives the right answer.

Proof: Define the function

`(x) = a+
f(b)− f(a)

b− a
(x− a),

which is the point-slope form of the line passing through the end-
points of the graph of f . Define a new function g(x) = f(x)− `(x),
so that g(a) = g(b) = 0. Applying Rolle’s theorem to g, we find
that there is some point where f ′(x) = `′(x), which is the desired
result.�

4.6 Two tricks with limits
4.6.1 Rational functions that give 0/0

Suppose we want to compute the following limit:

lim
x→2

x2 − 2x

x2 − 4

We first use the limit properties to find

lim
x→2

x2 − 2x = 0 and lim
x→2

x2 − 4 = 0.

Now to complete the computation we would like to apply the prop-
erty (P6) about quotients, but this would give us

lim
x→2

f(x) =
0

0
.

The denominator is zero, so we were not allowed to use (P6) (and the
result doesn’t mean anything anyway). We have to do something
else.

The function we are dealing with is a rational function, which
means, as mentioned in example 7, p. 102, that it is the quotient of
two polynomials. For such functions there is an algebra trick that
always allows you to compute the limit even if you first get 0

0 . The
thing to do is to divide numerator and denominator by x − 2. In
our case we have

x2 − 2x = (x− 2) · x, x2 − 4 = (x− 2) · (x+ 2)

so that

lim
x→2

f(x) = lim
x→2

(x− 2) · x
(x− 2) · (x+ 2)

= lim
x→2

x

x+ 2
.

After this simplification we can use the properties (P...) to compute

lim
x→2

f(x) =
2

2 + 2
=

1

2
.
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4.6.2 The “don’t make δ too big” trick

In this section we describe a trick, the “don’t make δ to too big”
trick, that is sometimes helpful when we want to evaluate a limit
directly from the epsilon-delta definition. Say we want to prove that
limx→1 x

2 = 1. This may not seem to require a fancy proof, since
obviously plugging in x = 1 gives x2 = 1. But since functions can
be discontinuous, plugging in does not always prove the value of a
limit. Also, this example will be an excuse to develop a technique
that can be useful in less trivial cases.

We have f(x) = x2, a = 1, L = 1, and as usual when computing
a limit the question is, “how small should |x − 1| be to guarantee
|x2 − 1| < ε?”

We begin by estimating the difference |x2 − 1|

|x2 − 1| = |(x− 1)(x+ 1)| = |x+ 1| · |x− 1|.

As x approaches 1 the factor |x− 1| becomes small, and if the other
factor |x + 1| were a constant (e.g. 2 as in the previous example)
then we could find δ as before, by dividing ε by that constant.

Here is a trick that allows you to replace the factor |x+ 1| with
a constant. We hereby agree that we always choose our δ so that
δ ≤ 1. If we do that, then we will always have

|x− 1| < δ ≤ 1, i.e. |x− 1| < 1,

and x will always be between 0 and 2. Therefore

|x2 − 1| = |x+ 1| · |x− 1| < 3|x− 1|.

If we now want to be sure that |x2 − 1| < ε, then this calculation
shows that we should require 3|x − 1| < ε, i.e. |x − 1| < 1

3ε. So we
should choose δ ≤ 1

3ε. We must also live up to our promise never
to choose δ > 1, so if we are handed an ε for which 1

3ε > 1, then
we choose δ = 1 instead of δ = 1

3ε. To summarize, we are going to
choose

δ = the smaller of 1 and
1

3
ε.

We have shown that if you choose δ this way, then |x−1| < δ implies
|x2 − 1| < ε, no matter what ε > 0 is.

The expression “the smaller of a and b” shows up often, and
is abbreviated to min(a, b). We could therefore say that in this
problem we will choose δ to be

δ = min
(
1, 1

3ε
)
.
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Example 18
. Show that limx→4 1/x = 1/4.

. We apply the definition with a = 4, L = 1/4 and f (x) = 1/x .
Thus, for any ε > 0 we try to show that if |x − 4| is small enough
then one has |f (x)− 1/4| < ε.

We begin by estimating |f (x)− 1
4 | in terms of |x − 4|:

|f (x)− 1/4| =
∣∣∣∣1x − 1

4

∣∣∣∣ =
∣∣∣∣4− x

4x

∣∣∣∣ =
|x − 4|
|4x |

=
1
|4x |
|x − 4|.

As before, things would be easier if 1/|4x | were a constant. To
achieve that we again agree not to take δ > 1. If we always have
δ ≤ 1, then we will always have |x−4| < 1, and hence 3 < x < 5.
How large can 1/|4x | be in this situation? Answer: the quantity
1/|4x | increases as you decrease x , so if 3 < x < 5 then it will
never be larger than 1/|4 · 3| = 1

12 .

We see that if we never choose δ > 1, we will always have

|f (x)− 1
4 | ≤

1
12 |x − 4| for |x − 4| < δ.

To guarantee that |f (x)− 1
4 | < ε we could therefore require

1
12 |x − 4| < ε, i.e. |x − 4| < 12ε.

Hence if we choose δ = 12ε or any smaller number, then |x−4| <
δ implies |f (x)−4| < ε. Of course we have to honor our agreement
never to choose δ > 1, so our choice of δ is

δ = the smaller of 1 and 12ε = min
(
1, 12ε

)
.
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Problems
a1 Suppose x is a big, positive number. Experiment on a
calculator to figure out whether

√
x+ 1 −

√
x− 1 comes out big,

normal, or tiny. Try making x bigger and bigger, and see if you
observe a trend. Based on these numerical examples, form a con-
jecture about the limit of this expression as x approaches infinity.

. Solution, p. 232

a2 If we want to pump air or water through a pipe, common
sense tells us that it will be easier to move a larger quantity more
quickly through a fatter pipe. Quantitatively, we can define the re-
sistance, R, which is the ratio of the pressure difference produced
by the pump to the rate of flow. A fatter pipe will have a lower
resistance. Two pipes can be used in parallel, for instance when you
turn on the water both in the kitchen and in the bathroom, and in
this situation, the two pipes let more water flow than either would
have let flow by itself, which tells us that they act like a single pipe
with some lower resistance. The equation for their combined resis-
tance is R = 1/(1/R1 + 1/R2).
(a) Analyze the case where one resistance is fixed at some finite
value, while the other approaches infinity. Give a physical interpre-
tation.
(b) Likewise, discuss the case where one is finite, but the other be-
comes very small.

. Solution, p. 232

c1 Sketch the graph of the function e−1/x, and evaluate the
following four limits:

lim
x→0+

e−1/x

lim
x→0−

e−1/x

lim
x→+∞

e−1/x

lim
x→−∞

e−1/x

. Solution, p. 232

Problems 121



c2 Compute the following limits.
(a)

lim
x→−4

(x+ 3)1492

(b)
lim
x→−4

(x+ 3)1493

(c)
lim

x→−∞
(x+ 3)1493

(d)
lim
x→∞

(sinx)1492

√

c3 Compute the following limits.
(a)

lim
u→∞

u2 + 3

u2 + 4

(b)

lim
u→∞

u5 + 3

u2 + 4

(c)

lim
u→∞

u2 + 1

u5 + 2

(d)

lim
u→∞

(2u+ 1)4

(3u2 + 1)2

√

c4 Do the following notations make sense?

lim
x↗∞

lim
x↘∞

lim
x↗−∞

lim
x↘−∞

c5 Give two examples of functions for which limx↘0 f(x) does
not exist.

c6 Find a constant k such that the function

f(x) =

{
3x+ 2 for x < 2

x2 + k for x ≥ 2.

is continuous. Hint: Compute the one-sided limits.
√
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c7 A function f is defined by

f(x) =


x3 for x < −1

ax+ b for − 1 ≤ x < 1

x2 + 2 for x ≥ 1.

where a and b are constants. The function f is continuous. What
are a and b? Hint: Compute the one-sided limits.

√

c8 Find a rule for determining the number of horizontal and
vertical asymptotes possessed by the following function.

f(x) =
1

ax2 + bx+ c

. Solution, p. 233

c9 Find any horizontal and vertical asymptotes of the following
function.

f(x) =
x7 + 1234567

x7 + 1

. Solution, p. 234

c10 Let

f(x) =

(
x2 + 1

x2 + 2
− x2 + 3

x2 + 4

)−1

.

Find any horizontal or vertical asymptotes. . Solution, p. 234

e1 The galactic empire has been pretty successful at crushing
the rebel alliance, but there are still rebels laying low, scattered
around in various solar systems. The empire offers a bounty x for
the severed head of each rebel that is brought to the Dark Lord.
Let f be the fraction of the rebels who are caught by the freelance
bountry hunters. As in the examples in section 4.4.1, sketch the
function f(x) without knowing its equation. You should be able to
infer whether or not f ′(0) = 0. . Solution, p. 234

e2 A pendulum is pulled back through an angle θ and then
released. It then swings from θ to −θ and back to θ again; this is
considered one complete oscillation. The time it takes to carry out
this oscillation is called the period, T . If the pendulum is hung on
a stiff rod rather than with a string, then θ can be as big as 180 ◦;
you will find it helpful to consider what happens in the extreme case
where θ equals 180 ◦. As in the examples in section 4.4.1, sketch the
function T (θ) without knowing its equation. You should be able to
infer whether or not T ′(0) = 0.

e3 The rod in the figure is supported by the finger and the
string. The tension T in the string depends on the distance b of the
finger from the free end of the rod. As in the examples in section
4.4.1, sketch the function T (b) without knowing its equation. The
domain of the function consists of the physically possible values of
b that allow the system to be in equilibrium. Discuss the x- and
y-intercepts.
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Problem e3.

Problem g1.

g1 The top part of the figure shows the position-versus-time
graph for an object moving in one dimension. On the bottom part
of the figure, sketch the corresponding velocity-versus-time graph.

. Solution, p. 235

i1 Let

f(x) =
1

x2 − 4x+ 5

be defined on the interval [−1, 1]. Find any local and global extrema,
as well as any asymptotes. Sketch the graph.

i2 Let

f(x) =
1

x10 − 1
.

Find any local and global extrema, as well as any asymptotes.
Sketch the graph.

i3 Let

f(x) =
x2 + 1

x− 1
.

Find any local and global extrema, as well as any asymptotes.
Sketch the graph.

k1 Prove the following theorem. Let f be a real function whose
second derivative is defined and continuous. If f ′′ is sometimes pos-
itive and sometimes negative, then f has a point of inflection x, and
f ′′(x) = 0. Note that f ′′(x) = 0 is not the definition of a point of
inflection, and that the theorem fails for a function on the rational
numbers. . Solution, p. 235

n1 Compute the following limits.
(a)

lim
t→1

t2 + t− 2

t2 − 1

(b)

lim
t↗1

t2 + t− 2

t2 − 1

(c)

lim
t→−1

t2 + t− 2

t2 − 1
√

n2 Use the ε-δ definition to prove the following limit.

lim
x→3

x2 = 9
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.Box 5.1 A transcendental
number

The first number proved to
be transcendental, by Liouville
in 1844, was:

0.110001000000000000000001 . . .

The first one occurs in the 1st
decimal place, the next in the
2nd decimal place, the next in
the 6th, and so on, with the
sequence of numbers being 1,
1·2 = 2, 1·2·3 = 6, . . . Without
going into the formal proof, it’s
not hard to get an intuitive feel
for why this number is tran-
scendental. Since the list of
numbers 1, 2, 6, . . . grows ex-
tremely rapidly, we find that
as we continue to write the
decimal expansion, it gets ex-
tremely sparse. It’s so sparse
that if we try to cook up a poly-
nomial such as P (x) = x2 +
9x− 1 with Liouville’s number
x as a root, we are bound to
fail; x2 and all higher powers
of x are also extremely sparse,
and this makes it impossible
to get them to cancel out and
give P (x) = 0. For a proof,
see the Wikipedia article “Li-
ouville number.”

Chapter 5

More derivatives

5.1 Transcendental numbers and functions
5.1.1 Transcendental numbers

Historically, the motivation for expanding the rational numbers
to form the reals came from the desire to be able to discuss numbers
like
√

2 or 3
√

7. (The decision was not without controversy. Legend
has it that Hippasus of Metapontum, who lived in the fifth century
B.C., proved

√
2 to be irrational, and that the gods punished him by

causing him to drown at sea.) We’ve already seen that the complete-
ness property of the reals (section 4.5, p. 111) guarantees that

√
2

is a real number, and more generally one can use the intermediate
value theorem to prove that roots of polynomials are real.

However, there are also numbers that cannot be defined as roots
of polynomials having rational-number coefficients. These are called
transcendental numbers. In some sense nearly all real numbers are
transcendental. For example, suppose we generate a random digit
by some method such as rolling dice, and we let this be the first digit
in a decimal. Continuing in this way, we keep on generating more
and more decimal places. If we could continue generating the digits
indefinitely, then there would be a 100% probability that our number
would be transcendental. The important mathematical constants π
and e (the base of natural logarithms) are transcendental. Although
transcendental numbers are the most common kind of real number,
proving whether or not a particular number is transcendental can be
difficult. Box 5.1 describes the first number that was ever proved to
be transcendental. It was not until 44 years later that π was proved
to be transcendental.

An important property of transcendental numbers is that they
can’t be written using any finite number of symbols in terms of
rational numbers and the basic operations of arithmetic: addition,
subtraction, multiplication, division, and roots. This is the reason
for the name; transcendental numbers “transcend” arithmetic. For
example, the number

−9 +
√

85

2
= 0.1098 . . .

is not transcendental, since it is written in terms of rational num-
bers and four of the basic operations. (It is a root of the polyno-
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.Box 5.2 A different defi-
nition of e

Some people like lagers bet-
ter than ales, Chicago better
than Paris, and the following
better than equation (2) as a
definition of e:

e = lim
n→∞

(
1 +

1

n

)n
(1)

The story-line behind (1) is
something like this. Sup-
pose your bank account car-
ries an interest rate of 100%;
the second 1 in the equation is
100/100. If the interest is com-
pounded yearly, then your bal-
ance goes up every year by a
factor of (1 + 1/1)1 = 2. If
it’s compounded monthly at an
interest rate of 100%/12, then
the yearly increase is a factor of
(1+1/12)12 = 2.6. If we let the
12 become a variable n that ap-
proaches infinity, then the 2.6
becomes e.

Let’s connect this to equa-
tion (2). Applying the approx-
imation dy/dx ≈ ∆y/∆x to
y = ex, we have

ex ≈ 1 + x

for small values of x. Let x =
1/n, where n is large. Then
e1/n ≈ 1 + 1/n, so e ≈ (1 +
1/n)n, which is consistent with
equation (1).

mial P given in box 5.1.) The converse is not true: not all non-
transcendental numbers can be written using these operations. For
example, the polynomial x5 − x + 1 has a root x ≈ −1.17, which
cannot be expressed in terms of arithmetic.

5.1.2 Transcendental functions

Similarly, we have functions that are transcendental or not tran-
scendental. For example, the function

f(x) =
−9 +

√
x

2

is not transcendental because it can be written using the same basic
operations of arithmetic. The techniques developed in chapter 2 are
sufficient to differentiate any function that is not transcendental.
The purpose of the present chapter is to see how to differentiate
some functions that are transcendental.

Since the numbers π and e are transcendental, it is not surprising
that the following closely related functions are transcendental:

sinx

cosx

ex

lnx

Although the distinction between transcendental and non-transcend-
ental numbers is of little practical significance (e.g., no real-world
measurement will tell us whether a stick’s length is transcendental
or not), the distinction becomes an important one when we come
to functions, because the methods we know so far will not suffice
to differentiate a transcendental function. Most of this chapter will
be concerned with how to extend our methods of differentiation to
cover these functions.

5.2 Derivatives of exponentials
In example 3 on p. 19 and example 6 on p. 51 we found that the
derivative of an exponential is an exponential: the more bunnies you
have, the faster you produce baby bunnies; the more credit-card debt
you have, the faster your debt grows. Furthermore, we were led to
the conjecture that in the case of “the” exponential function ex, the
constant of proportionality between the function and its derivative
was simply one:

(ex)′ = ex (2)

There is no way to prove this unless we adopt some definition of e.
In fact equation (2) serves as a perfectly good definition of e. Box
5.2 connects this to another popular definition.
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a / A typical graph of the concen-
tration of caffeine in the blood, in
units of milligrams per liter, as a
function of time, in hours.

Adopting equation (2) as a definition, application of the identity
bx = e(ln b)x (see equation (9), p. 134) and the chain rule gives the
more general rule

(bx)′ = (ln b)bx (3)

for any base b.

Caffeine Example 1
. The concentration of a foreign substance in the bloodstream
generally falls off exponentially with time as c = coe−t/a, where
co is the initial concentration, and a is a constant. For caffeine
in adults, a is typically about 7 hours. An example is shown in
figure a. Differentiate the concentration with respect to time, and
interpret the result. Check that the units of the result make sense.

. Using the chain rule,

dc
dt

= coe−t/a ·
(
−1

a

)
= −co

a
e−t/a

This can be interpreted as the rate at which caffeine is being re-
moved from the blood and broken down by the liver. It’s negative
because the concentration is decreasing. According to the orig-
inal expression for x , a substance with a large a will take a long
time to reduce its concentration, since t/a won’t be very big un-
less we have large t on top to compensate for the large a on
the bottom. In other words, larger values of a represent sub-
stances that the body has a harder time getting rid of efficiently.
The derivative has a on the bottom, and the interpretation of this
is that for a drug that is hard to eliminate, the rate at which it is
removed from the blood is low.

It makes sense that a has units of time, because the exponen-
tial function has to have a unitless argument, so the units of t/a
have to cancel out. The units of the result come from the factor
of co/a, and it makes sense that the units are concentration di-
vided by time, because the result represents the rate at which the
concentration is changing.

A base-10 exponential Example 2
. Find the derivative of the function y = 10x , verifying equation
(3) directly in the case b = 10.

. In general, one of the tricks to doing calculus is to rewrite func-
tions in forms that you know how to handle. This one can be
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b / The radian measure of
the angle θ is s/r .

c / The sine of θ is y/r , the
cosine x/r .

d / The sine and cosine de-
fined on the unit circle, for any
angle θ.

rewritten as a base-e exponent:

y = 10x

ln y = ln
(
10x)

ln y = x ln 10

y = ex ln 10

Applying the chain rule, we have the derivative of the exponential,
which is just the same exponential, multiplied by the derivative of
the inside stuff:

dy
dx

= ex ln 10 · ln 10

= (ln 10)10x

5.3 Review: the trigonometric functions
Before we talk about how to differentiate trig functions, here’s an
opportunity to refresh your memory on what trig functions are in
the first place.

5.3.1 Radian measure

The presence of numbers like 60 and 360 in our units of mea-
surement for time and angles dates back to the ancient Babylonians.
The reason for splitting larger quantities into these numbers of sub-
divisions is that 60 and 360 are divisible by many small integers,
including 2, 3, 5, 10, and 12. For practical purposes it’s fine for
a carpenter to define a right angle as 90 ◦. But it turns out to be
much less cumbersome when doing calculus to adopt the radian as
our unit of angle, as defined in figure b. A right angle is π/2 radians,
a full circle 2π. From the definition we observe that a number with
“units” of radians is in fact the unitless ratio of two distances.

5.3.2 Sine and cosine

Figure c shows a right triangle. The sine and cosine of the angle
θ are defined as the ratios

sin θ =
y

r
and

cos θ =
x

r
.

Since these ratios are the same for any two similar triangles, the
definitions depend only on θ, not on the triangle.

5.3.3 Arbitrary angles

Since the above definition assumes a right triangle, it is restricted
to angles θ that are between 0 and π/2 (a right angle). Figure d
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e / The derivatives of the co-
sine and sine functions at θ = 0.

f / A geometrical method of
finding sin′ 0.

shows how to generalize this to an angle that is an arbitrary real
number. The circle is the unit circle, i.e., the circle centered on the
origin and having radius 1. The angle is by convention measured
counterclockwise from the x axis; a negative angle would indicate
a clockwise rotation. The (x, y) coordinates of a point on the unit
circle at angle θ are (cos θ, sin θ).

It is handy to know these facts:

cos 0 = 1

sin 0 = 0

These do not need to be memorized. They can be recovered instantly
by visualizing the unit circle.

The following identities will be needed later in the chapter.

sin(x+ y) = sinx cos y + cosx sin y (4a)

cos(x+ y) = cosx cos y − sinx sin y (4b)

5.3.4 Other trigonometric functions

In terms of the same variables defined above, we have the fol-
lowing additional trigonometric functions:

tan θ =
y

x
[important]

csc θ = 1/ sin θ [not as important]

sec θ = 1/ cos θ [not as important]

cot θ = 1/ tan θ [not as important]

5.4 Derivatives of trigonometric functions
5.4.1 Derivatives of the sine and cosine

Sometimes a variable oscillates back and forth. A weight hung
from a rubber band will vibrate up and down. The temperature of
Los Angeles goes down every winter and back up every summer. A
sinusoidal wave is the most mathematically simple model of such an
oscillation, and if we want to know the rate of change, we need to
know how to differentiate such a function.

So how would we find the derivative of a sine or cosine? Since
they’re transcendental, they can’t be expressed in terms of simpler
functions that we know how to differentiate.

Derivatives at θ = 0

Let’s start by finding the derivatives of these functions at zero,
as shown in figure e.

Since the cosine is an even function, we have cos′ 0 = 0.
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g / Sketching the derivative
of the sine function.

What about sin′ 0? The definition of the derivative gives

sin′ 0 = lim
θ→0

sin θ − sin 0

θ − 0

= lim
θ→0

sin θ

θ
.

In figure f, the definition of radian measure gives θ = s, while the
definition of the sine function tells us that sin θ = y. Thus the limit
above becomes

sin′ 0 = lim
θ→0

y

s
.

If θ is close to zero, then the lengths y of the vertical line and s
of the arc should be nearly the same, so we have the small-angle
approximation sin θ ≈ θ. Our limit is clearly1 equal to 1, so we have
sin′ 0 = 1.

As a check on our work, we can take a numerical approximation
to the derivative at θ = 0,

sin′ 0 ≈ sin 0.001− sin 0

0.001
[angle in radians]

= 0.99999983,

which is indeed close to 1.

A preliminary sketch

What about the value of sin′ at θ 6= 0? Let’s sketch the derivative
of sin θ in order to gain some insight. Using the techniques of section
4.4.2, p. 108, we obtain figure g. At θ = 0, the slope of the sine
function is 1, which is as large and positive as it ever gets, so the
value of the derivative sketched in the bottom graph is large and
positive. At π/2 (90 degrees), the sine has its maximum value of
1, and its derivative is 0. At π, the sine has its largest negative
derivative. The graph we’re led to draw for sin′ θ looks like the
cosine function.

The graph of the cosine function is the same as the graph of the
sine function except for a shift to the left by a quarter of a cycle.
Therefore by the shift property of the derivative (p. 16), if the deriva-
tive of sin is cos, then the derivative of cos must be a cosine function
shifted to the left by another quarter-cycle, which gives − sin. Curve
sketching therefore leads us to the following conjectures:

sin′ = cos

cos′ = − sin

1Strictly speaking, we should prove that for the approximation sin θ ≈ θ, the
error E = θ − sin θ goes to zero fast enough so that limθ→0 E/θ = 0. In fact,
one can show based on the areas in figure f that |E| < |θ2| for |θ| < 0.1.
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Proof of the derivatives of the sine and cosine

To prove this, let’s apply the definition of the derivative to the
sine function.

sin′ x = lim
h→0

sin(x+ h)− sinx

h

Making use of the identity sin(x + y) = sinx cos y + cosx sin y
(p. 129), we find

sin′ x = lim
h→0

sinx cosh+ cosx sinh− sinx

h

= cosx lim
h→0

sinh

h
+ sinx lim

h→0

cosh− 1

h
.

We have already determined these two limits: they are 1 and 0,
respectively, so sin′ x = cosx as claimed. The similar calculation for
the derivative of cosx is left as an exercise.

5.5 Review: the inverse of a function
Some operations can be undone. Others can’t. Computer software
often has an “undo” function. But what if the operation is mixing
hot coffee with cold milk? There is no way to undo this operation,
even in principle, because information has been lost. No matter how
closely we inspect the mixture, we have no way of determining how
hot the original coffee was, or how cold the original milk.

We’ve defined a function as a graph that passes the vertical line
test, so that every input x corresponds to a single output y. A
function may or may not be undoable. If every y corresponds to
a single x, i.e., if the function passes a horizontal line test, then
it’s undoable, and we call the “undo” operation the inverse of the
function. The inverse of a function f is notated f−1, where only
context tells us that we mean the “undoing” of f , rather than 1/f .

h / Some functions and their inverses. In each case, the inverse function is found by reflecting the
graph across the line y = x .

Geometrically, inverting the function means interchanging the
roles of x and y, which requires flipping it across the 45-degree
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diagonal defined by the line y = x, as in figure h. For example,
figure h/1 shows the “add-one” function defined by f(x) = x + 1,
and the “subtract-one” function f−1(x) = x− 1 that undoes it.

We define a function as a graph that passes the vertical-line test.
The set of all x values for which the graph contains an (x, y) point
is called the domain of the function, while the set of such y values
is its range. That is, the domain is the set of all legal inputs, while
the range is the set of possible outputs. Sometimes we define a
particular function using a formula, and this may implicitly restrict
its domain. For example, if we define

y =
1

x− 1
,

then by implication the domain is the whole real line except for
x = 1, which would produce division by zero.

Sometimes there are real-world reasons for restricting the do-
main of a function. For example, in section 4.3.3, p. 103, we dis-
cussed the amount of tension T in a telephone wire that was nec-
essary in order to make it sag by a height h at the middle. This
function was of the form T = k/h, where k is a constant. Math-
ematically this function is well defined for h < 0, but physically
that would be meaningless, since a cable can only sustain tension
(T > 0) — only a rigid object such as a rod can sustain compression
(T < 0).

Sometimes by restricting the domain of a function we can make
it invertible. For example, the function y = x2 fails the horizontal-
line test, so it doesn’t have an inverse function. But if we restrict
its domain to x ≥ 0, as in figure h/4, then we can define its inverse
function, which is x =

√
y (using the positive root).

In terms of the composition of functions (section 2.4.3, p. 56),
the function f ◦ f−1 is simply the identity function y = x (perhaps
with a restriction on its domain and range). The same applies to
f−1 ◦ f .

Discussion question

A Which of the following four statements are true, and which are false?

1. For all real numbers x , sin(sin−1 x) = x .

2. For all real numbers x , sin−1(sin x) = x .

3. For all real numbers x , tan(tan−1 x) = x .

4. For all real numbers x , tan−1(tan x) = x .

5.6 Derivative of the inverse of a function
Suppose that x is how many gallons of gas I buy, and y is how
much money I pay. Then y is a function of x, and the rate at which
this function changes, i.e., the price per gallon of gas, in my area is
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i / The function y = x3.

j / The function x = y1/3.

currently about

∆y

∆x
= 4

$

gallon
.

It’s valid to measure this rate of change with an expression of the
form ∆ . . . /∆ . . ., because the rate of change is constant. I might
also want to know how much gas I can get for each additional dollar
I’m willing to spend, and this is found by ordinary algebra to be

∆x

∆y
= 0.25

gallon

$
.

If y is a function of x, and the function is invertible, then the
Leibniz notation suggests that this should hold even for non-constant
rates of change, i.e., that the derivative of the inverse function is

dx

dy
=

1(
dy
dx

) .

This is in fact correct, with the caveat that when dy/dx = 0, dx/ dy
is undefined because it blows up to infinity.

Derivative of a cube root Example 3
. Let y = x3. Find dx/dy .

. The function y = x3, figure i, has a well-defined inverse x = y1/3,
which is the cube root, figure j. The derivative of the original
function is

dy
dx

= 3x2.

The derivative of the inverse function is

dx
dy

=
1(
dy
dx

)
=

1
3x2

=
1
3

x−2.

If we prefer to express this in terms of y , we can substitute to get

dx
dy

=
1
3

y−2/3,

which agrees with the power rule (section 2.6, p. 57).

This expression holds everywhere except x = 0, y = 0, where
dx/dy blows up to infinity.
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5.7 Review: logarithms
5.7.1 Logarithms

The inverse of exponentiation is the logarithm. If

bp = z,

then

logb z = p.

For example, log2 8 = 3, because 23 = 8.

The number 10 has appeared above as a base, and that’s because
humans have 10 fingers. There’s clearly nothing all that special
about 10. It’s an accident of evolution. A number with more cosmic
significance is e ≈ 2.71818 . . . Exponents and logarithms with base
e have some nice properties, which we’ll discuss later in more detail.
Any expression with x in the exponent is called an exponential, but
ex is “the” exponential function. Sometimes when x is a complicated
expression it gets awkward to write it as a superscript, and then we
write exp(. . .) instead of e.... The logarithm with the special base e
is called the natural logarithm, notated ln.

5.7.2 Identities

The following identities are useful. Exponentials and logs are
inverse operations:

logb (bx) = x (5a)

blogb x = x (5b)

Logs turn multiplication and division into addition and subtraction:

log(xy) = log x+ log y (6a)

log(x/y) = log x− log y (6b)

A log in one base can be changed into a log in another base:

logb x =
logc x

logc b
(7)

For example, log10 106 = 6, whereas log100 106 = 3. It may be
convenient to convert a logarithm to a natural log, with c = e:

logb x =
lnx

ln b
. (8)

Similarly, an exponential with an arbitrary base b can be converted
to an exponential with base e.

bx = e(ln b)x (9)
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k / A “ladder” of powers of x .
Ignoring multiplicative constants,
differentiation usually just takes
us one step down the ladder.
The diagram shows the two
exceptions.

5.8 The derivative of a logarithm
We now know enough to differentiate a logarithm. The natural log
has the nicest properties, so we’ll start with it. Let

y = lnx.

Then

dy

dx
=

1(
dx
dy

) [derivative of an inverse]

=
1(

dey

dy

) [x = ey]

=
1

ey
[derivative of the exponential is the exponential]

=
1

x
[x = ey again]

The result is unexpectedly simple.

Derivative of the natural logarithm

d lnx

dx
=

1

x

This is noteworthy because it shows that there must be an ex-
ception to the rule that we can always obtain a function that varies
like xn−1 by differentiating something like xn. If we believed that
this rule was always true, then we would think that we could ob-
tain the function x−1 by differentiating some function of the form
(constant)x0. But in fact this doesn’t work, since x0 is a constant,
and the derivative of x0 is therefore 0. Figure k shows the idea.

Derivatives of logs with other bases can be found by using equa-
tion (8) to convert to a natural log. The result is

d logb x

dx
=

1

(ln b)x

The power rule for irrational exponents Example 4
In section 2.6, p. 57, we showed that the power rule (xn)′ = nxn−1

held for any nonzero integer value of n, and also gave a sample
of a proof for a fractional exponent. However, the methods used
there were not capable of proving the result for irrational values
of n, or of demonstrating it for all rational values in a single proof.
We now have the ability to carry out the proof in an efficient way
for any real, nonzero n.
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l / The sine and inverse sine
functions.

y = xn

= en ln x

By the chain rule,

dy
dx

= en ln x · n
x

= xn · n
x

= nxn−1.

(For n = 0, the result is zero.)

5.9 Derivatives of inverse trigonometric
functions

The sine and cosine functions are not invertible, since they fail the
horizontal line test — in fact, any horizontal line that crosses these
functions crosses them in infinitely many places. For example, if I
tell you that I took the sine of some angle, and the sine was zero,
then the angle could have been any number from the infinite set
{. . . − 2π,−π, 0,π, 2π, . . .}. But by restricting the domain of the
sine function appropriately, e.g., to −π/2 ≤ x ≤ π/2, we can make
an invertible function and define an inverse sine, figure l.

The derivative of the inverse sine can be found straightforwardly
by using our knowledge of the derivatives of inverses of functions.
Let y = sin−1 x. Then:

dy

dx
=

1(
dx
dy

)
=

1

cos y
[because x = sin y]

=
1√

1− sin2 y
[because (cos y, sin y) lies on the unit circle]

=
1√

1− x2

A similar calculation shows that the derivative of cos−1 x is−1/
√

1− x2.
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5.10 Summary of derivatives of
transcendental functions

Given the derivatives of trig and inverse trig functions from sections
5.4 and 5.9, it is straightforward to extend the list of derivatives to
include the other familiar trig functions. In this section we provide
a summary for reference purposes of all of the derivatives of the
transcendental functions encountered so far.

(ex)′ = ex (lnx)′ = 1/x

(sinx)′ = cosx (sin−1 x)′ = (1− x2)−1/2

(cosx)′ = − sinx (cos−1 x)′ = −(1− x2)−1/2

(tanx)′ = (cosx)−2 (tan−1 x)′ = (1 + x2)−1

5.11 Hyperbolic functions
The hyperbolic trig functions are defined as follows.

sinhx =
1

2

(
ex − e−x

)
coshx =

1

2

(
ex + e−x

)
and

tanhx =
sinhx

coshx
.

Their inverses can be calculated using the following relations:

sinh−1 x = ln
(
x+

√
x2 + 1

)
cosh−1 x = ln

(
x+

√
x2 − 1

)
tanh−1 x =

1

2
ln

(
1 + x

1− x

)
The derivatives are as follows:

(sinhx)′ = coshx (sinh−1 x)′ = (x2 + 1)−1/2

(coshx)′ = sinhx (cosh−1 x)′ = (x2 − 1)−1/2

(tanhx)′ = (coshx)−2 (tanh−1 x)′ = (1− x2)−1
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Review problems
a1 For what set of angles θ do we have both sin θ < 0 and
cos θ < 0? . Solution, p. 235

a2 Let the function f be defined by f(x) = x3 + 1. Find an
expression for the function f−1.

√

a3 Evaluate log3

√
1/27.

√

Problem b1 does not require any of the new calculus learned in this
chapter, but does require knowledge of the transcendental functions
reviewed in it.

b1 Find the following limits at infinity. Check your results by
plugging in large numbers on a calculator or by graphing.
(a)

lim
x→∞

sinx

sin(x+ π)

(b)

lim
x→∞

√
x+ 1 cosx

x+ 3

(c)

lim
x→∞

lnx

x

(d)

lim
x→∞

e−x

cosx
√
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Problem d3.

Problems
c1 Differentiate ln(2t+ 1) with respect to t.

. Solution, p. 235

c2 Differentiate a sin(bx+ c) with respect to x.
. Solution, p. 235

c3 Differentiate the following with respect to x: e7x, ee
x
. (In the

latter expression, as in all exponentials nested inside exponentials,
the evaluation proceeds from the top down, i.e., e(ex), not (ee)x.)

. Solution, p. 235

c4 The range of a gun, when elevated to an angle θ, is given by

R =
2v2

g
sin θ cos θ.

Find the angle that will produce the maximum range.
. Solution, p. 236

c5 Prove, as claimed on p. 137, that the derivative of tan θ with
respect to θ is (cos θ)−2. Assume that the derivatives of the sine and
cosine are already known. . Solution, p. 236

c6 Show that the function sin(sin(sinx)) has maxima and min-
ima at all the same places where sinx does, and at no other places.

. Solution, p. 236

c7 Find any extrema of the hyperbolic cosine function defined
on p. 137. . Solution, p. 237

d1 (a) Let y = ln(1 + x). Find the best linear approximation to
this function near x = 0.

√

(b) Use the result of part a to approximate the value of ln(1.003)
without a calculator.

√

d2 (a) Let y = cosx. Find the best linear approximation to this
function near x = π/2.

√

(b) Use the result of part a to approximate the value of cos(1.5)
without a calculator.

√

d3 (a) Use the graph to visually estimate the location of the
inflection point of the function

y = ex − x2.

(b) Use calculus to find the point exactly.
√
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A Mercator projection, prob-
lem e6. Note the extremely
exaggerated scale at the poles.

d4 The function
y = 3x − 2−x

has one inflection point. Locate it.
√

In problems e1-e4, differentiate the given functions.

e1 sin cos tanx
√

e2 ln cos ex
√

e3 exp sin lnx
√

e4 tan−1
√

lnx
√

e5 Differentiate the function xx.
√

e6 On a map drawn using a Mercator projection, the y coor-
dinate on the paper is given by y = a tanh−1 sinφ, where φ is the
latitude, a is a constant, and the inverse hyperbolic tangent function
is defined on p. 137. (a) Find the derivative dy/dφ, which indicates
the latitude-dependent scale of the map in the north-south direc-
tion. (b) The approximations tanhx ≈ x and sinx ≈ x are valid
for small x. Use these approximations to approximate the behavior
of y(φ) for small φ, and use this to check your answer to part a.√
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f1 A cold bottle of beer is left outside under a shady tree at a
picnic. Its temperature as a function of time is given by

T = a− be−ct,
where a, b, and c are constants.
(a) Infer the units of a, b, and c. (For examples of how to do this, see
section 1.9 on p. 34, example 9 on p. 29, and example 1 on p. 127.)
(b) Find the derivative dT/ dt, which measures how fast the beer is
warming up. Check that its units make sense.
(c) Interpret both the original equation and your answer to part b
in the limit where t→∞.
(d) Interpret the constants a, b, and c physically.

. Solution, p. 237

f2 A person is parachute jumping. During the time between
when she leaps out of the plane and when she opens her chute, her
altitude is given by an equation of the form

y = b− c
(
t+ ke−t/k

)
.

where b, c, and k are constants. Because of air resistance, her ve-
locity does not increase at a steady rate as it would for an object
falling in vacuum.
(a) What units would b, c, and k have to have for the equation to
make sense? (For examples of how to do this, see section 1.9 on
p. 34, example 9 on p. 29, example 1 on p. 127, and problem f1
above.)
(b) Find the person’s velocity, v, as a function of time.

√

(c) Use your answer from part b to get an interpretation of the con-
stant c.
(d) Find the person’s acceleration, a, as a function of time.

√

(e) Use your answer from part d to show that if she waits long
enough to open her chute, her acceleration will become very small.

f3 If an object is vibrating, and the vibration is gradually dying
out, its motion (position as a function of time) is typically of the
form

x(t) = A cos(ωt+ δ)e−bt,

where A, ω, δ, and b are constants.
(a) Infer the units of each of the four constants, and give a physical
interpretation. (For examples of how to infer the units, see section
1.9 on p. 34, example 9 on p. 29, example 1 on p. 127, and problem
f1 above.)
(b) Find the velocity.
(c) Check that the units of your answer to part b make sense.

√
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f4 Sometimes doors are built with mechanisms that automati-
cally close them after they have been opened. The designer can set
both the strength of the spring and the amount of friction. If there
is too much friction in relation to the strength of the spring, the
door takes too long to close, but if there is too little, the door will
oscillate. For an optimal design, we get motion of the form

x = cte−bt,

where x is the position of some point on the door, and c and b are
positive constants. (Similar systems are used for other mechanical
devices, such as stereo speakers and the recoil mechanisms of guns.)
In this example, the door moves in the positive direction up until a
certain time, then stops and settles back in the negative direction,
eventually approaching x = 0. This would be the type of motion
we would get if someone flung a door open and the door closer then
brought it back closed again. (a) Infer the units of the constants
b and c. (For examples of how to do this, see example 9 on p. 29,
example 1 on p. 127, and problem f1 above.)
(b) Find the door’s maximum speed (i.e., the greatest absolute value
of its velocity) as it comes back to the closed position.

√

(c) Show that your answer has units that make sense.

g1 Credit card fraud creates costs (including both economic
costs and inconvenience) for businesses, credit card holders, and
the credit card companies. If the company institutes a particular
measure to prevent fraud, it may be able to eliminate some fraction
of the fraud that would otherwise have occurred. Putting some
additional measure in place may then eliminate some fraction of the
remaining fraud, further reducing the total amount. Let the amount
the company spends on prevention be p. For the reasons described
above, it’s reasonable to imagine that fraud falls off exponentially
as a function of p, so that the total cost to the company is

C(p) = p+ ae−bp.

Here a and b are constants, the first term represents the cost of
carrying out the fraud prevention, and the second term represents
the cost of the fraud that was not prevented.
(a) Find the value of p that minimizes the cost.

√

(b) Check that the units of your answer make sense (section 1.9,
p. 34).
(c) For what values of the parameters a and b does your answer not
produce a meaningful result? Check that this makes sense.
(d) Suppose that legislation forces the credit card company to suffer
more of the consequences of the fraud, rather than making their
customers bear the brunt. What change does this imply in the
parameters of the model? Check that your answer to part a shows
the right trend when this change is applied.
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Problem g2. Probability of
death in the U.S. in the year
2003. Note the logarithmic scale
on the vertical axis. Between
the ages of about 30 and 95, the
death rate rises exponentially, as
shown by the linearity of the data
on the logarithmic graph.

g2 Benjamin Gompertz (1779-1865) was a British mathemati-
cian and pioneering actuarial scientist, who overcame significant so-
cial barriers due to antisemitism. We would all like to live forever,
and actuaries are in the business of telling us that we probably can’t.
Based on mortality data, Gompertz constructed a model in which
an initial population No of babies born at t = 0 becomes at a later
time t a surviving population

N = Noe
1−et ,

where I’ve simplified the expression by leaving out some constants.
If you’ve survived to age t, then your probability of dying in the
coming year is

−∆N

N
,

where −∆N is the number of deaths per year. Therefore the death
rate is

− 1

N

dN

dt
.

Show that in the Gompertz model, this death rate is proportional to
et. This exponential rate of increase is demonstrated in the figure.

g3 In problem g1 on p. 142, we minimized a function that looked
like

y = x+ ae−bx,

where x, a, and b were all positive. Suppose instead that the function
had been

y = x2 + ae−bx,

with the corresponding quantities still being positive. Using the
same technique to find its minimum, we obtain an equation of a type
called a transcendental equation, which cannot be solved exactly
for x in terms of elementary functions. Use the intermediate value
theorem to prove that such a minimum nevertheless exists, as long
as a and b are both greater than zero.

k1 Proof by induction was introduced in section 2.6.1, p. 58.
Use induction to prove that

dn

dxn
bx = (ln b)nbx.

To understand what’s going on, you may wish to calculate the first
few derivatives; however, doing this and observing the pattern does
not constitute a proof.
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k2 The function
f(x) = e−

1
2
x2

defines the standard “bell curve” of statistics. (Note that exponenti-
ation is not associative, and that in exponentiation, xy

z
means x(yz),

not (xy)z; an expression of the latter form is not very interesting,
since it simply equals x(yz).)

Proof by induction was introduced in section 2.6.1, p. 58. Use in-
duction to prove that the nth derivative of f is of the form

f (n)(x) = Pn(x)e−
1
2
x2

,

where Pn is an nth order polynomial. To understand what’s going
on, you may wish to calculate the first few derivatives; however,
doing this and observing the pattern does not constitute a proof.
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.Box 6.1 More indetermi-
nate forms

We will mainly be con-
cerned with the indeterminate
form 0/0, but there are other
ones as well. Suppose we try to
evaluate the limit

lim
θ↗π/2

(π
2
− θ
)

tan θ

by plugging in θ = π/2. This
fails because the first factor
goes to zero, but the tangent
factor blows up to infinity. This
is an example of the indetermi-
nate form 0 · ∞. The limit is
defined and equals 1, but plug-
ging in won’t tell us that.

The limit

lim
x→∞

√
x+ 1−

√
x− 1

is an example of the indetermi-
nate form ∞ − ∞. It equals
zero.

Chapter 6

Indeterminate forms and
L’Hôpital’s rule

6.1 Indeterminate forms
6.1.1 Why 1/0 and 0/0 are not morally equivalent

If you enter 1/0 and 0/0 into your calculator, it probably flashes
the same error message in both cases. You learned in grade school
that division by zero is “undefined.” But there are completely dif-
ferent reasons why these two types of division by zero are undefined.
Briefly:

• 1/0 is undefined as a real number because it would have to be
infinite, and the real number system doesn’t include infinite
numbers.1

• 0/0 is undefined because writing this expression doesn’t give
enough information to say what it equals.

Suppose that for some real number x, we had

0

0
= x.

Multiplying by 0 on both sides gives a condition

0 = 0x

that x should satisfy. But every real number has this property,
so writing 0/0 doesn’t give enough information to say whether x
is defined and, if so, what its value is. Expressions of this “not-
enough-information” type are called indeterminate forms.

6.1.2 Indeterminate forms from brute force on a limit

When we try to evaluate a limit, usually our first attempt is
simply to plug in and see if a number comes out. For example, if
we want to evaluate

lim
x→0

1 + x

3 + x
,

we will naturally try plugging in x = 0, get the result 1/3, and we’re
done. This is not an indeterminate form. But, for example, suppose

1See section 2.9, p. 64, and example 11, p. 113.
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that f(x) = x2 and we want to evaluate f ′(1). The definition of the
derivative in terms of a limit gives

lim
h→0

(1 + h)2 − 1

h
,

and attempting to plug in h = 0 results in the indeterminate form
0/0. This limit is well defined; it equals 2. But the indeterminate
form tells us that the brute-force technique was too crude, and we
needed to handle the calculation a little more delicately.

The indeterminate form 0/0 can also be undefined. For example,

limx↘0

√
x

x2 =∞.

6.2 L’Hôpital’s rule in its simplest form
Every derivative, if defined, can be seen as a case of the indetermi-
nate form 0/0. Conversely, we can often convert a 0/0-type limit
into a problem in evaluating derivatives. Suppose that we want to
calculate a limit of the form

lim
x→a

u(x)

v(x)
,

where u(a) = 0 and v(a) = 0. Then ∆u = u(x) − u(a) means the
same thing as u, and similarly, ∆v equals v. So we can rewrite our
limit as

lim
x→a

∆u

∆v
,

or

lim
x→a

∆u/∆x

∆v/∆x
.

If v′(a) 6= 0, then by property P6 of the limit, p. 95, our limit
becomes

limx→a ∆u/∆x

limx→a ∆v/∆x
,

which equals

u′(a)

v′(a)
.

We have proved the following.
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a / Guillaume de L’Hôpital (1661-1704) was a French marquis. Born into
a military family, he eventually became a mathematician because of bad
eyesight. He wrote the first calculus textbook. As acknowledged in the
preface, the results given in the book originated with Leibniz and the
Bernoulli brothers, but L’Hôpital’s own name has become attached to the
theorem known as L’Hôpital’s rule. When students meet the Marquis, they
always wonder about his name, which looks like the English word “hospi-
tal.” Actually, he spelled it with an “s,” and it is the same word in French.
The “H” is silent, and the accent is on the “a.” As French people gradually
stopped pronouncing the “s,” they stopped writing it, but put the housetop
accent on the “ô” to show what they were leaving out. The family name
probably comes from an early association with a “hospital,” a word that in
medieval times had a broader meaning, encompassing institutions such
as guest-houses for pilgrims and what we would today call subsidized
public housing.

Theorem: L’Hôpital’s rule (simplest form)
If u and v are functions with u(a) = 0 and v(a) = 0, the

derivatives u′(a) and v′(a) are defined, and the derivative
v′(a) 6= 0, then

lim
x→a

u

v
=
u′(a)

v′(a)
.

We will generalize L’Hôpital’s rule in section 6.3, p. 148.

Example 1
. Evaluate

lim
x→0

sin x
x + x3

. Attempting to plug in x = 0 gives the indeterminate form 0/0,
and this suggests applying L’Hôpital’s rule. The derivative of the
top is cos x , and the derivative of the bottom is 1+3x2. Evaluating
these at x = 0 gives 1 and 1, so the answer is 1/1 = 1.

Example 2
The limit

lim
x→1

3x2 − x − 2
x2 − 1

is of the form 0
0 , so we can try to apply l’Hôpital’s rule. We get

lim
x→1

3x2 − x − 2
x2 − 1

=
6x − 1

2x
=

5
2
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6.3 Fancier versions of L’Hôpital’s rule
Mathematical theorems are sometimes like cars. I own a Honda Fit
that is about as bare-bones as you can get these days, but persuading
a dealer to sell me that car was like pulling teeth. The salesman
was absolutely certain that any sane customer would want to pay
an extra $1,800 for such crucial amenities as upgraded floor mats
and a chrome tailpipe. L’Hôpital’s rule in its most general form is
a much fancier piece of machinery than the stripped-down model
described in section 6.2. The price you pay for the deluxe model is
that the proof becomes much more complicated. I’ll state the fancier
versions of L’Hôpital’s rule below and give examples, but relegate
the proofs to a later section and, in one case, a homework problem.

6.3.1 Multiple applications of the rule

In the following example, we have to use l’Hôpital’s rule twice
before we get an answer.

Example 3
. Evaluate

lim
x→π

1 + cos x
(x − π)2

. Applying l’Hôpital’s rule gives

− sin x
2(x − π)

,

which still produces 0/0 when we plug in x = π. Going again, we
get

− cos x
2

=
1
2

.

This works because of the following generalization of L’Hôpital’s
rule

Theorem: L’Hôpital’s rule (first generalization)
If u and v are functions with u(a) = 0 and v(a) = 0, and the
derivatives u′(a) and v′(a) are defined, then

lim
x→a

u

v
= lim

x→a

u′(x)

v′(x)
.

The difference from the original form of the theorem is that we no
longer require v′(a) 6= 0, and the right-hand side has a limit. In cases
where v′(a) 6= 0, the original form would have been good enough,
but the general form also works, since the limit on the right-hand
side can be evaluated simply by plugging in. We will prove this
more general form of the rule in section 6.3.4, p. 151.
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6.3.2 The indeterminate form∞/∞
Consider an example like this:

lim
x→0

1 + 1/x

1 + 2/x
.

This is an indeterminate form like∞/∞ rather than the 0/0 form for
which we’ve already proved l’Hôpital’s rule. L’Hôpital’s rule applies
to examples like this as well. This can be proved by rewriting an
expression like limu/v, where both u and v blow up, in terms of
new variables U = 1/u and V = 1/v. The result is to reduce the
∞/∞ form to the 0/0 form. The proof is carried through in section
6.3.4, p. 151.

Example 4
. Evaluate

lim
x→0

1 + 1/x
1 + 2/x

.

. Both the numerator and the denominator go to infinity. Differ-
entiation of the top and bottom gives (−x−2)/(−2x−2) = 1/2. We
can see that the reason the rule worked was that (1) the constant
terms were irrelevant because they become negligible as the 1/x
terms blow up; and (2) differentiating the blowing-up 1/x terms
makes them into the same x−2 on top and bottom, which cancel.

Note that we could also have gotten this result without l’Hôpital’s
rule, simply by multiplying both the top and the bottom of the orig-
inal expression by x in order to rewrite it as (x + 1)/(x + 2).

6.3.3 Limits at infinity

It is straightforward to prove a variant of l’Hôpital’s rule that
allows us to do limits at infinity. We use a change of variable to
change a limit like limx→∞ u(x)/v(x) to a new limit stated in terms
of a variable X = 1/x. The proof is left as an exercise (problem z1,
p. 154). The result is that l’Hôpital’s rule is equally valid when the
limit is at ±∞ rather than at some real number a.

Acme or Glutco? Example 5
. You have some money, and two choices of what to invest it in.
A share in Acme, Inc., costs $7, and returns a dividend of $1 per
year. A share of Glutco costs $30 and gives a dividend of $2
per year. If we want to compare the long-term value of the two
investments, a natural way to do it is with the limit

lim
t→∞

−7 + t
−30 + 2t

.

The top represents the net return on Acme, the bottom Glutco.
If this limit is greater than 1, then Acme is the better long-term
investment. What is the value of this limit?
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. Differentiation of the top gives 1, and differentiation of the bot-
tom gives 2. The limit is therefore 1/2, and you’re wiser to invest
in Glutco. The interpretation is that the constant terms are irrele-
vant, and in the long run the competition between the numerator
and denominator is determined by which one grows faster.
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6.3.4 Proofs

The simplest form of l’Hôpital’s rule was proved in section 6.2,
p. 146. In this section we prove the generalizations of l’Hôpital’s
rule claimed in sections 6.3.1-6.3.3.

Change of variable

As described briefly in sections 6.3.2 and 6.3.3, two of the added
features of the generalized l’Hôpital’s rule (the form∞/∞ and limits
at infinity) can be proved by a change of variable. To demonstrate
how this works, let’s imagine that we were starting from an even
more stripped-down version of l’Hôpital’s rule than the one in sec-
tion 6.2, p. 146. Say we only knew how to do limits of the form
x → 0 rather than x → a for an arbitrary real number a. We
could then evaluate limx→a u/v simply by defining t = x − a and
reexpressing u and v in terms of t.

. Example 6
Reduce

lim
x→π

sin x
x − π

to a form involving a limit at 0.

. Define t = x − π. Solving for x gives x = t + π. We substitute
into the above expression to find

lim
x→π

sin x
x − π

= lim
t→0

sin(t + π)
t

.

If all we knew was the→ 0 form of l’Hôpital’s rule, then this would
suffice to reduce the problem to one we knew how to solve. In
fact, this kind of change of variable works in all cases, not just for
a limit at π, so rather then going through a laborious change of
variable every time, we could simply establish the more general
form in section 6.2, p. 146, with→ a.

The form ∞/∞
To see why l’Hôpital’s rule works in general for ∞/∞ forms,

let’s try a change of variable on the outputs of the functions u and
v rather than their inputs. Suppose that our original problem is of
the form

lim
u

v
,

where both functions blow up.2 We then define U = 1/u and V =
1/v. We now have

lim
u

v
= lim

1/U

1/V
= lim

V

U
,

and since U and V both approach zero, we have reduced the problem
to one that can be solved using the version of l’Hôpital’s rule already

2Think about what happens when only u blows up, or only v.

Section 6.3 Fancier versions of L’Hôpital’s rule 151



proved for the indeterminate form 0/0:

lim
u

v
= lim

V ′

U ′

Differentiating and applying the chain rule, we have

lim
u

v
= lim

−v−2v′

−u−2u′
.

Since lim ab = lim a lim b provided that lim a and lim b are both de-
fined (property P5, p. 95), we can rearrange factors to produce the
desired result — but this only works under the assumption that
the limit the limits of the two factors on the right do both exist.
Therefore the above proof works only when limu/v 6= 0. This re-
striction is in fact inessential, and the rule does hold even when
limu/v = 0. For some proofs that work in the more general case,
see https://tinyurl.com/rw6jdh4.

Limits at infinity

As briefly outlined in section 6.3.3, this proof can be done by
using a change of variables of the form X = 1/x. The proof is left
as an exercise (problem z1, p. 154).
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Problems
a1 Verify the following limits.

lim
s→1

s3 − 1

s− 1
= 3

lim
θ→0

1− cos θ

θ2
=

1

2

lim
x→∞

5x2 − 2x

x
=∞

lim
n→∞

n(n+ 1)

(n+ 2)(n+ 3)
= 1

lim
x→∞

ax2 + bx+ c

dx2 + ex+ f
=
a

d

[Granville, 1911] . Solution, p. 238

a2 Evaluate
lim
x→0

x cosx

1− 2x

exactly, and check your result by numerical approximation.
. Solution, p. 238

a3 Amy is asked to evaluate

lim
x→0

x

ex
.

She applies l’Hôpital’s rule, differentiating top and bottom to find
1/ex, which equals 1 when she plugs in x = 0. What is wrong with
her reasoning? . Solution, p. 239

a4 Evaluate

lim
u→0

u2

eu + e−u − 2

exactly, and check your result by numerical approximation.
. Solution, p. 239

a5 Evaluate

lim
t→π

sin t

t− π
exactly, and check your result by numerical approximation.

. Solution, p. 239
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d1 Compute the following limits using l’Hôpital’s rule.

(a) lim
x→−1

x2 − 1

x2 − 8x− 9
.

√

(b) lim
x→π/2

sin 2x

cosx
.

√

(c) lim
x→1/2

cosπx

1− 2x
.

√

d2 Suppose n is some positive integer, and the limit

lim
x→0

cosx− 1 + x2/2

xn
= L

exists. Also suppose L 6= 0. What is n? What is the limit L?
√

d3 What happens when you use l’Hôpital’s rule to compute
these limits? Compare against what you would have gotten by a
more straightforward method.

(a) lim
x→0

x2

x
.

(b) lim
x→0

x2

x3
.

d4 The logical role of counterexamples was discussed in box 1.3,
p. 20. The following rule sounds very much like l’Hôpital’s:

if lim
x→a

f(x)

g(x)
exists, then lim

x→a

f ′(x)

g′(x)
also exists, and the two limits

are equal.

But this is not always true! Find a counterexample.

d5 Here is a method for computing derivatives: since, by defi-
nition,

f ′(a) = lim
x→a

f(x)− f(a)

x− a
is a limit of the form 0

0 , we can always try to find it by using
l’Hôpital’s rule. What happens when you do that?

z1 Section 6.3.4, p. 151, demonstrates the use of changes of
variable in proving variants on l’Hôpital’s rule. As suggested on
p. 152, do this for limits at infinity, using the change of variable
X = 1/x.
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b / This archaic computing
device is called a slide rule. Like
the teacup in figure a, it’s an
analog computer, and it doesn’t
have inputs or outputs. Let A be a
number on the scale marked “A,”
and B the number below it on the
“B” scale. Then with the central
sliding stick in the position shown
in the photo, A = 4B.

Chapter 7

From functions to
variables

7.1 Some unrealistic features of our view of
computation so far

Calculus was invented by Newton and Leibniz, who lived in an era
when the best tool for calculation was a freshly sharpened quill,
used for writing down formulas. They had in mind a certain model
of computation. I’ve introduced you to a related but somewhat
different, modern model, based on functions. This model doesn’t
always relate well to reality.

a / Light inside a teacup makes a
cusp. Rotating the graph should
be irrelevant.

We defined a function geometrically, as a graph that passes the
vertical line test. This doesn’t work well in an example like figure
a. It shouldn’t matter whether we take the photo from one angle
or another, but if we insist on describing this shape as a function,
then rotating it makes a huge difference — the difference between
being able to describe the shape and not being able to. In a/2, y is
a function of x. In a/3, y isn’t a function of x; it fails the vertical
line test. In a/4, x is a function of y, but y isn’t a function of x.
These distinctions are silly in this context. The x and y coordinates
are arbitrary, and we shouldn’t treat them asymmetrically. We can
think of the teacup as a little computer that knows how to compute
this particular graph. The teacup doesn’t know or care what’s x or
what’s y; neither x nor y is its “input” or “output.”

7.2 Newton’s method
In the teacup-computer’s personal utopia, there is no distinction
between input and output. But if we want to join the teacup in
computational nirvana, we have a problem, because we, unlike the
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teacup, find some functions easier to compute than their inverses.
For example, every sixth-grade kid in California is supposed to know
how to take the cube of a decimal number such as 4.43. That is,
given x, they can compute y = x3. But how many people do you
know who can invert the function and efficiently obtain x = 3

√
y

with paper and pencil? Some functions are computationally cheap
to evaluate, but computationally expensive to evaluate in reverse.1

Newton, however, invented a method that allows us to at least
partially overcome this uninvertibility problem. Newton’s method
lets us find a good approximation to x for a given y, provided that
we know how to evaluate both y and dy/dx for a given x.

Suppose that we want to find the cube root of 87. We start
with a rough mental guess: since 43 = 64 is a little too small, and
53 = 125 is much too big, we guess x ≈ 4.3. Testing our guess, we
have 4.33 = 79.5. We want y to get bigger by 7.5, and we can use
calculus to find approximately how much bigger x needs to get in
order to accomplish that:

dy

dx
≈ ∆y

∆x

∆x ≈ ∆y

dy/dx

=
∆y

3x2

=
∆y

3x2

= 0.14

Increasing our value of x to 4.3 + 0.14 = 4.44, we find that 4.443 =
87.5 is a pretty good approximation to 87. If we need higher preci-
sion, we can go through the process again with ∆y = −0.5, giving

∆x ≈ ∆y

3x2

= 0.14

x = 4.43

x3 = 86.9.

This second iteration gives an excellent approximation.

1An extreme example is embedded in the cryptography systems that allow
you to buy something online without worrying that your credit card number
is being exposed to random people as it hops across the internet from you to
amazon.com. These algorithms depend on the fact that it is computationally
cheap to multiply large numbers, but prohibitively expensive to factor a large
number into its prime factors.
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c / Example 1.

The orbit of Mercury Example 1
. Figure 1 shows the astronomer Johannes Kepler’s analysis of
the motion of the planets. The ellipse is the orbit of the planet
around the sun. At t = 0, the planet is at its closest approach to
the sun, A. At some later time, the planet is at point B. The angle
x (measured in radians) is defined with reference to the imaginary
circle encompassing the orbit. Kepler found the equation

2π
t
T

= x − e sin x ,

where the period, T , is the time required for the planet to com-
plete a full orbit, and the eccentricity of the ellipse, e, is a number
that measures how much it differs from a circle. The relationship
is complicated because the planet speeds up as it falls inward to-
ward the sun, and slows down again as it swings back away from
it.

The planet Mercury has e = 0.206. Find the angle x when Mer-
cury has completed 1/4 of a period.

. We have

y = x − (0.206) sin x ,

and we want to find x when y = 2π/4 = 1.57. As a first guess, we
try x = π/2 (90 degrees), since the eccentricity of Mercury’s orbit
is actually much smaller than the example shown in the figure,
and therefore the planet’s speed doesn’t vary all that much as it
goes around the sun. For this value of x we have y = 1.36, which
is too small by 0.21.

∆x ≈ ∆y
dy/dx

=
0.21

1− (0.206) cos x
= 0.21

(The derivative dy/dx happens to be 1 at x = π/2.) This gives
a new value of x , 1.57+.21=1.78. Testing it, we have y = 1.58,
which is correct to within rounding errors after only one iteration.
(We were only supplied with a value of e accurate to three sig-
nificant figures, so we can’t get a result with precision better than
about that level.)

Usually the series of estimates x0, x1, x2, . . . provided by New-
ton’s method converges, meaning that limn→∞ xn exists. Further-
more, the convergence is often very rapid, so that only a few itera-
tions are needed to get excellent precision. But as explored further
in problem z1, 171, Newton’s method sometimes fails to converge.
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d / “Give me a lever and a
place to stand, and I will move
the world.” – Archimedes

7.3 Related rates
Figure d is old and fanciful, but it exemplifies an idea that we use
every day. We have some machine or mechanical linkage, which
could be as simple as the corkscrew used to open a bottle of wine,
or as complicated as the suspension on a fancy sports car. The
motion of one part of the machine is not independent of the other
parts. In the simple example of a lever, suppose that the heights2

of the two ends relative to the fulcrum are A on the left and B on
the right. Then we have a constraint of the form

B

A
= −k, (1)

where k is the ratio of the lengths of the arms, and the minus sign
is because if one end goes up, the other has to come down. In figure
d, k ≈ 11; of course Archimedes was imagining k as some very large
number, but the cartoonist had to fit everything. Notice that we
have no natural reason to call B a function of A or A a function
of B. If the arm of the lever is perfectly rigid, then all we can say
is that whatever forces act on the ends, the outcome will satisfy
the constraint. We don’t have to consider one variable as causing
the other. (The earth looks more likely to move Archimedes than
Archimedes is to move the earth.) In (1), I picked one variable to
be on top and the other on the bottom, but instead of B/A = −11,
I could just as easily have written A/B = −1/11.

In examples like this one, we naturally want to know the speed
of the motion. How fast will the cork come out of the wine bottle?
How fast will my bike go up a hill if I’m in a certain gear? Based
on your training so far, you are likely to come up with the following
answer for the lever. The position A of the load on the left side of
the lever is a function of the position B of the right end, while B is
in turn a function of time t. The chain rule therefore gives

dA

dt
=

dA

dB
· dB

dt
. (2)

We know dA/dB, which, based on the constraint, is simply −1/k.
Next we write down a formula for the function B(t), differentiate it,
and plug the result in to equation (2). Done. A triumph of calculus.

Oops. There is no mathematical formula for B(t). The motion
of the right end of the lever in figure d comes from an old Greek guy
grunting and muttering curses into his white beard.

The term “related rates” is used in calculus to refer to the fact
that we don’t necessarily care whether the function B(t) is known.
Often it may be of interest simply to know that if B changes at a
given rate, then A will change at some other rate. These two rates
are related to each other by the constraint equation (1).

2These heights should actually be measured along circular arcs.
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e / Example 3. Top: a racing
camshaft from a car. Middle: two
cams with specific mathematical
shapes. Bottom: Graphs of
h(θ) and its first and second
derivatives.

Scuba diving Example 2
When scuba divers ascend or descend, they have to control how
fast they go, or else the changes in pressure will be too rapid, and
they can be killed. Let P be the pressure in units of atmospheres,
y the depth in meters, and t the time in minutes. We then have

dP
dt

=
dP
dy
· dy

dt

Given the density of water and the strength of the earth’s grav-
ity, dP/dy = 0.1 atm/m. The standard advice is not to ascend
faster than dy/dt ≈ −10 m/min. This implies that a diver’s
body can safely withstand decompression at a rate dP/dt ≈
−1 atm/min.

Cams Example 3
Cams, like the ones shown in figure e, can be thought of as the

mechanical realization of the mathematical notion of a function.
As the cam rotates, the follower rides up and down above it.

The crankshaft of an engine has its angle ϕ determined by me-
chanical linkages (the piston rods) to the pistons. In a four-stroke
engine such as the ones in cars, the crankshaft is geared to
the camshaft so that the camshaft’s angle θ is constrained by
θ = ϕ/2. The camshaft then drives each follower, whose height
h is controlled by a function h(θ). This function is determined by
the shape of the cam. The followers open and close the valves,
which perform functions such as letting fuel into the cylinders.
The velocity of the follower is given by

dh
dt

=
dh
dθ
· dθ

dϕ
· dϕ

dt
,

where dϕ/dt is what we measure on a tachometer.

Cam 1 in the figure is shaped so that the follower falls at constant
velocity and rises at constant velocity. This has the disadvantage
that d2h/dθ2 is infinite, which would theoretically cause infinite
acceleration d2h/dt2 in the follower at the turn-around points. In
reality the result would be that the follower would leave contact
with the cam, and there would be undesirable vibration.

Cam 2 is shaped according to

h(θ) = 1 +
1
π

(
|θ| − 1

2
sin(2|θ|)

)
for θ ∈ [−π,π]. This is known as a cycloid cam. It has the desir-
able property that all of its derivatives up to the third, d3h/dθ3, are
finite, and furthermore that the cycloidal segments of the graph
can be joined smoothly onto constant (“dwell”) segments without
losing these properties. For the reasons discussed in example 5,
p. 89, it is desirable not to have a large third derivative.
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f / The equation x2 + y2 = r2

does not define a function unless
we restrict it to an appropriate
region.

g / Example 4.

7.4 Implicit functions
As you read this, the world is turning, and you are moving in a circle.
Let this circle be centered on the origin, with radius r. Physical
forces constrain you to stay on this circle, rather than flying up into
the sky or sinking down into the earth’s core. The Pythagorean
theorem allows us to write this constraint as the equation

x2 + y2 = r2, (3)

whose solutions are graphed in figure f. This graph fails the vertical
line test, so y isn’t a function of x, and it also fails the horizontal
line test, so x isn’t a function of y. Usually by restricting it to a
small enough region, we can make it into a function. If we restrict
to region 1, 2, 3, or 5, y is a function of x, and similarly for x as
a function of y in regions 1, 2, 3, and 4. The largest piece of the
graph on which equation (3) defines a function is a semicircle. For
example, we could solve for x and find the function

x(y) = −
√
r2 − y2, (4)

where the choice of the negative square root gives the left-hand half
of the circle. Equation (3) is said to define an implicit function,
while (4) defines an explicit one. In an example such as this one, it
would be inconvenient to try to work with explicit functions. For
example, if we insisted on having explicit functions, we would run
into hassles because any calculation would have to be broken down
into special cases covering different regions.

Watt’s linkage Example 4
Figure g shows a mechanical linkage patented by James Watt in
1784, and still used in applications such as automobile suspen-
sions. It consists of a chain of three linked rods that are free to
rotate about bearings at their ends. The ends of the chain are
fixed. The purpose of the arrangement is to constrain some ob-
ject, attached to the center of the middle rod, to move along the
figure-eight curve shown as a dotted line. In this example, the
proportions of the three arms are 1 :

√
2 : 1, so that when the

central point is at the center of the curve, they outline a square.
This choice of proportions, along with an appropriate choice of
scale for the coordinates, can be shown to produce a curve with
the equation

(x2 + y2)2 = 2(x2 − y2). (5)

In a typical application of a Watt linkage, the central point is at-
tached to the chassis of a car, and the ends are attached to the
wheels. The linkage is reoriented so that the darkened segment
of the curve is approximately vertical, and the car’s chassis is
then constrained so that its motion is nearly vertical. When the
car goes around corners, the body can’t move sideways.
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h / 1. Farmer Bill pulls a stump.
The pulley is a simple machine,
like the lever of section 7.3. Just
like the lever, it increases the
applied force by some factor,
while decreasing the motion
by the same factor. 2. In our
mathematical model, the fixed
post is assumed to be immovable
and perfectly rigid, and the ropes
perfectly unstretchable, so that
their lengths `1 and `2 are con-
stant. For simplicity, we neglect
the radius of the pulley.

Equation (5) constrains x and y relative to one another, and makes
either variable an implicit function of the other. The linkage can
be thought of as a type of computer (an analog computer rather
than a digital one) that computes the implicit function (5).

7.5 Implicit differentiation
We would like to be able to do calculus on implicit functions. As a
typical application, consider example 4. If vertical motion is desired
for small displacements from the center, then we want to rotate the
linkage by the correct angle so that the dark portion of the figure-
eight curve is vertical near its center. That is, we want to know the
slope of the tangent line at this point, so that we can rotate the
tangent line and make it vertical. The slope of the tangent line is
the derivative, so essentially we need to differentiate a graph that
represents an implicit rather than explicit function.

7.5.1 Some simple examples

An example involving addition

But let’s start with a simpler example. In figure h, we want
to find a proportion between the motion of the tractor and stump.
With some arithmetic, we find

A+ 2B − 2`2 − `1 = 0, (6)

which is an implicit relation between A and B. Any change ∆A in
the position of the tractor will correspond to some change ∆B in
the position of the stump. Setting the change in the left-hand side
of equation (6) equal to 0, we have

∆(A+ 2B − 2`2 − `1) = 0.

The change in a sum is the same as the sum of the changes, so
∆A+ 2∆B − 2∆`2 −∆`1 = 0. But the constants don’t change, so

∆A+ 2∆B = 0. (7a)

The tractor moves twice as much as the stump, and the motion is
such that as A increases, B decreases. All of the following are just
different ways of expressing the same thought.

dA

dB
+ 2 = 0 (7b)

1 + 2
dB

dA
= 0 (7c)

dA

dt
+ 2

dB

dt
= 0 (7d)

dA+ 2 dB = 0 (7e)

Equation (7e) says that if (7a) works for ordinary numbers like 2
meters and −1 meter, then it should also work for infinitely small
numbers (section 2.9, p. 64). Alternatively, some people like to think
of an equation like (7e) as nothing more than an informal shorthand
for equations involving derivatives such as 7b-7d.
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i / A geometrical interpreta-
tion of equation (9a). Boyle’s law
says that the areas of the initial,
dark rectangle and the final,
dashed rectangle are the same.
The area v dp lost in the top strip
equals the area p dv gained in
the side strip.

An example with multiplication

Boyle’s law states that at a fixed temperature, a sample of an
ideal gas has its pressure and volume related by

pv = k, (8)

where k is a constant. For example, compressing the gas to a smaller
volume makes its pressure increase.

Suppose that the pressure changes from p to p + ∆p, and the
volume from v to v + ∆v. Then:

∆(pv) = 0 [change in each side of (8); ∆k = 0]

(p+ ∆p)(v + ∆v)− pv = 0 [subtract initial pv from final]

p∆v + v∆p+ ∆p∆v = 0 [distribute and cancel pv terms]

This messy expression can be cleaned up in the case where ∆p and
∆v are small. The product of two small numbers is even smaller,
and if we make them small enough, their product will always be
negligibly small compared to them. (Cf. p. 47.) To show that we’re
now talking about very small numbers, we notate the changes as dp
and dv. We then have:

p dv + v dp = 0. (9a)

This looks just like the product rule. In this context, symbols like
dp and dv are referred to as differentials, and we talk about “taking
differentials” on both sides of (8) to get (9a). The process of taking
differentials is no different than the process of taking a derivative. As
in the example of the pulley on p. 161, there are multiple equivalent
ways of expressing this statement:

p
dv

dp
+ v = 0 (9b)

p+ v
dp

dv
= 0 (9c)

p
dv

dt
+ v

dp

dt
= 0 (9d)

Some people think of 9a as just a shorthand for (9b)-(9d).

7.5.2 Implicit differentiation in general

Reduced to differentiation of functions

The examples in section 7.5.1 show that no new techniques are
needed for implicit differentiation. Every fact about differentiating
a function corresponds to a similar fact about implicit differentia-
tion. If we wish, we can do implicit differentiation according to the
following recipe, which reduces it to differentiation of a function:

1. Take the equation that defines the implicit function and dif-
ferentiate both sides with respect to something. It doesn’t
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j / Examples 5 and 6. The
reason for the unexpectedly
simple result dy/dx = −x/y
becomes apparent here because
the slope of the radius is y/x ,
and the tangent line must be
perpendicular to the radius.

matter what we differentiate with respect to; it can be one
of the two variables in the equation, or it can be some other
variable such as time.

2. (Optional.) If desired, clear all the factors of 1/ dsomething.

A circle Example 5
. The equation x2 + y2 = r2 defines a circle. Implicitly differentiate
it.

. It doesn’t matter what we differentiate with respect to, so let’s
differentiate with respect to t , which lets us imagine that the point
(x , y ) is moving around the circle as time passes. Since r is a
constant, the derivative of the right-hand side is zero.

d(x2)
dt

+
d(y2)

dt
= 0

Since the expressions x2 and y2 aren’t written in terms of t , we
need to use the chain rule.

d(x2)
dx

dx
dt

+
d(y2)

dy
dy
dt

= 0

2x
dx
dt

+ 2y
dy
dt

= 0

x
dx
dt

+ y
dy
dt

= 0

We could stop here if we wished, but the factors of 1/dt are
messy, and t wasn’t even a variable in the original statement of
the problem, so it’s nicer to multiply by dt on both sides. We have

x dx + y dy = 0 (10)

or, equivalently,
dy
dx

= −x
y

. (11)

The form (10) has the advantage that it holds anywhere on the
circle, whose graph isn’t a function. Some people would prefer
(11) because they don’t believe in Santa Claus or infinitesimals,
but it has the disadvantage that it breaks the symmetry between
x and y , and it doesn’t hold at the two points on the circle where
y = 0.

An approximation on the circle Example 6
. The following are two nearby points on the unit circle:

(0.400000, 0.916515), (0.401000, 0.916078)

Verify that equation (10) is a good approximation.
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. Since ∆x and ∆y are small, it makes sense to expect that (10)
will be approximately correct if we substitute deltas for the differ-
entials. Let’s see if that’s true.

x∆x + y∆y = (0.400000)(0.001000) + (0.916515)(−0.000437)
= −0.000001

The approximation is so good that when we round off to six deci-
mal places, the result almost rounds to zero.

A little bit of . . .

Although we saw above that implicit differentiation can be re-
duced to differentiation of functions, this is not necessary in general.
People who are proficient in calculus don’t go around making up ad-
ditional variables like the t in example 5. For example, say that a
square has sides of length u. We can think of d as meaning “a little
bit of . . . ,”3 so that du is a little bit of a change in the length of
the square’s sides. Now u2 is the area of the square, and d(u2) is a
little bit of a change in its area. We have a power law that says

d(uk) = kuk−1 du.

This power law is exactly analogous to the one for a function u(t),
which, if we apply the chain rule, is

d(uk)

dt
= kuk−1 du

dt
.

Obviously neither of these needs to be memorized separately from
the other. Expressions like du and d(u2) are known as differentials.

Differential of a polynomial Example 7
. Find the differential of s2 + s, and use it to approximate the
change in this expression as s changes from 1.000 to 1.001.

. For differentiation we have a rule that the derivative of the sum
of two functions is the sum of the derivatives. The analogous rule
for differentials is that the differential of a sum is the sum of the
differentials. Therefore

d(s2 + s) = d(s2) + ds.

Likewise we have a power rule for differentials that corresponds to
the power rule for derivatives, and the case of the second power
was discussed in detail above. We therefore find

d(s2 + s) = 2s ds + ds.

The numerical approximation is

∆(s2 + s) ≈ (2s + 1)∆s = (3)(0.001) = 0.003.

3The phrase is due to the direct and unpretentious Silvanus Thompson, au-
thor of a best-selling 1910 calculus textbook.
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The power law for fractional exponents Example 8
In section 2.6.3, p. 58, we gave a proof, using only the elemen-
tary rules of calculus, that the derivative of x1/2 was 1

2x−1/2, as
expected from the power rule. We remarked that although it was
clear that such an argument could be constructed for any frac-
tional exponent, that was not the same as giving a general proof.
We can write such a proof using implicit differentiation. (We have
already proved this fact for any real exponent, using the exponen-
tial function, in example 4 on p. 135.)

Let n = p/q where p and q are integers and let

y = xp/q.

By raising both sides to the power p, we can make this into an
implicit function that uses only integer exponents.

yq = xp.

Implicit differentiation gives

qyq−1 dy = pxp−1 dx .

We then have

dy
dx

=
pxp−1

qyq−1

=
p
q

xp−1x−(p/q)(q−1)

=
p
q

xp/q−1

Example 9
Let y = f (x) be a function defined by

2y + sin y − x = 0.

(We encountered a function of this form in a real-world applica-
tion in example 1, p. 157.) It turns out to be impossible to find a
formula that tells you what f (x) is for any given x (i.e., there’s no
formula for the solution y of the equation 2y + sin y = x .) But you
can find many points on the graph by picking some y value and
computing the corresponding x .

For instance, if y = π then x = 2π, so that f (2π) = π: the point
(2π,π) lies on the graph of f . Let’s find how small changes in x
and y relate to one another near this point.

Taking differentials on both sides of the defining equation, we
have

2 dy + cos y dy − dx = 0
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k / Example 9. The graph of
x = 2y + sin y contains the point
(2π,π). What is the slope of the
tangent line at that point?

l / Example 10. The graph of
x + cos x = y + ey passes through
the origin. Its slope there is 1/2.

or
(2 + cos y ) dy − dx = 0.

We were thinking of y as a function of x . If we wish, we can now
find the derivative of this function.

dy
dx

=
1

2 + cos y
If we were asked to find f ′(2π) then, since we know f (2π) = π, we
could answer

f ′(2π) =
1

2 + cosπ
=

1
2− 1

= 1.

Implicit differentiation was not strictly necessary here, since we
could have expressed x as a function of y , found dx/dy , and
inverted this to get dy/dx . Our next example is one in which
there is no option other than implicit differentiation.

Example 10
. Let x + cos x = y + ey . The graph of this relation passes through
the origin. What is its slope there? Check your result numerically
with small values of x and y .

. We differentiate implicitly.

dx − sin x dx = dy + ey dy
dy
dx

=
1− sin x

1 + ey

Plugging in x = 0 and y = 0 gives dy/dx = 1/2.

To check this result, we use the approximation (y − 0)/(x − 0) ≈
dy/dx , which should be valid for small values of x and y . Let’s
use x = 0.010 and y = 0.005, which are small and have y/x =
1/2, as they approximately should according to the result of our
implicit differentiation. If we didn’t make a mistake in our calculus,
then these values of x and y should be nearly, but not exactly,
solutions of the original equation that defined the relation between
the variables. Plugging in, we have

x + cos x
?
≈ y + ey

1.00995 ≈ 1.01001

These are indeed nearly equal, but in fact they were guaranteed
to be nearly equal simply because (x , y ) was close to the origin,
and we knew that the origin was a point on the graph. What we
need to check is that the discrepancy between the two sides is
small compared to x and y themselves; if y = (1/2)x is the best
linear approximation to the graph near the origin, then the error
should be on the order of the squares of the variables, i.e., some-
thing like 10−4. Subtracting, we find that the difference between
the two sides of the equation is about 6 × 10−5, which is indeed
small enough to confirm the result of the implicit differentiation.
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m / Example 11.

Implicit differentiation applied to Watt’s linkage Example 11
As remarked on p. 161, there is a strong practical motivation for
finding the slope of the curve

(x2 + y2)2 = 2(x2 − y2) (12)

where it passes through the origin. Applying implicit differentia-
tion, we have

2(x2 + y2)(2x dx + 2y dy ) = 2(2x dx − 2y dy )

(1− x2 − y2)x dx = (1 + x2 + y2)y dy

dy
dx

=
(1− x2 − y2)x
(1 + x2 + y2)y

Directly plugging in x = 0 and y = 0 doesn’t work, since this gives
0/0, which is an indeterminate form (ch. 6). For small values of x
and y , the squares x2 and y2 become negligible compared to 1,
and dy/dx ≈ y/x , so this becomes

y
x
≈ x

y
x2 ≈ y2

y ≈ ±x .

Therefore this curve has a slope of ±1 on its two segments cross-
ing the origin. To make Watt’s linkage (with arms in the propor-
tions previously described) constrain its central point to nearly
vertical motion, we need to rotate it by 45 degrees.
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Problem a1.

Problem a3.

Problems

a1 Figure n/1 shows a thin stick being compressed between a
person’s hands. If the force is greater than a certain amount, the
stick will start to bow. Figure n/2 is similar, but at the bottom
the stick is constrained so that it can’t rotate; that is, its tangent is
kept vertical. The stick is stronger in this situation, and more force
is required before it will start to deform. The ratio of the two forces
can be shown to be (x/π)2, where x is the smallest positive solution
of the equation

tanx = x.

Inspection of a graph of the tangent function shows that the value
of x is approximately 4.5. Use Newton’s method to improve this
approximation to six decimal places.

√

a2 The British economist Robert Malthus (1766-1834) theorized
that the human population would tend to grow exponentially with
time, whereas the production of resources such as food would grow
only linearly, due to factors such as technological improvements. Un-
der these assumptions, the population would then inevitably become
too great to be fed, resulting in an event now known as a Malthusian
catastrophe, such as famine or genocide. As an example, suppose
that the production of food in a certain country increases so that
at time t ≥ 0, agriculture can feed a population 2 + t (in units of
millions of people), while the population (in the same units) equals
et. A Malthusian catastrophe will then occur at a time t determined
by

2 + t = et.

Use Newton’s method to determine t to two decimal places.
√

a3 The cycloid, figure o, was introduced briefly in example 3,
p. 159. It is the shape traced out in space by a point on the rim of
a rolling wheel (which in this problem we take to have radius 1). Its
equation in Cartesian coordinates can be written as

x = cos−1(1− y)−
√
y(2− y),

which can’t be solved for y in terms of x (in the sense defined in sec-
tion 9.3). Use Newton’s method to find the value of y corresponding
to x = 1, expressing your answer to five decimal places.

√

c1 A sugar cube dissolves in hot tea so that the edge of the
cube decreases at a rate r = d`/dt. (a) How fast is the volume V
of the cube changing when the edge has length `? (b) Check that
your answer has units that make sense. (c) Evaluate your answer
numerically for ` = 5.0 mm and r = −0.3 mm/s (millimeters per
second).

√
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Huge talus cones on the coast of
Svalbard, problem c3.

c2 (a) A conical water tank with vertex down has height h, and
radius a at the top. The water is being drained out at a rate of
flow F = dV/ dt. How fast is the depth d of the water decreasing,
when d has a certain value? (b) Check that your answer to part a
has units that make sense. (c) Evaluate your answer numerically
for a = 12 m, h = 30 m, d = 20 m, and dV/ dt = −1.4× 10−2 m3/s.√

c3 The photo shows a common geological formation called talus.
Erosion causes rock and sand to be washed down the gullies, where
over geological time this debris piles up higher and higher against
the vertical cliff. Suppose that the pile is in the shape of half a cone,
and that its volume grows at a rate R = dV/ dt. The cone’s slope α
is fixed by the maximum steepness for which friction is capable of
keeping a rock from sliding down. (a) Find the rate dh/dt at which
the height of the cone grows, in terms of R, α, and h. (b) Check
that your answer to part a has units that make sense. (c) Check the
dependence of your answer on the variable R. That means that you
should determine physically whether increasing R should increase
the result or decrease it, and then compare this to the mathematical
behavior of your equation. (d) Do the same for the variables α and
h.

√

c4 During chemotherapy, the volume of a spherical tumor de-
creases at a rate that is proportional to its surface area. Show that
its radius decreases at a constant rate.

In problems e1-e9, evaluate the differentials.

e1 d(B52) . Solution, p. 239

e2 d(2000BC) . Solution, p. 239

e3 d(sin k) . Solution, p. 239

e4 d(pb+ j) . Solution, p. 239

e5 d(ew)
√

e6 d(uck)
√

e7 d(eny)
√

e8 d
(

1
u3

) √

e9 d(πr2) (differential of the area of a circle)
√

Problems 169



In problems g1-g4, a function y(x) is defined explicitly. Find an
implicit definition that does not involve taking roots. Then use this
description to find the derivative dy/dx in terms of x.

g1 y =
√
x2 + 1 . Solution, p. 239

g2 y =
√

1− x
√

g3 y = 4
√
x+ x2

√

g4 y =
√

1−
√
x

√

In each of the problems i1-i4, an implicit relation is defined between
x and y, and the graph passes through the origin. Find the slope of
the graph at the origin.

i1 xex+y + y = 0 . Solution, p. 240

i2 sinx− y cos(xy) = 0
√

i3 (x+ 2y − 1)2 + (4x− y − 1)3 = 0
√

i4 sin (yex) + ex cos y − 1 = 0
√
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An astroid, problem k1.

Problem k2.

k1 An astroid is the shape traced by a point on a circle of radius
a/4 as it rolls around the inside of a circle of radius a. Its equation
is

x2/3 + y2/3 = a2/3.

(a) Check that the units of the equation make sense. (b) Use implicit
differentiation to find an extremely simple expression for dy/dx in
terms of y and x. (Do not eliminate y in favor of x, because that
makes the expression more complicated.) (c) Check the units of
your result. (d) Check that the sign of your result is correct in all
four quadrants of the graph. (e) The notion of a cusp was briefly
introduced on p. 61; it is a horn-shaped point on a graph where
the two branches are parallel when they meet at the tip. From the
figure, it’s hard to tell whether the astroid has cusps or whether
there is a nonzero angle between the branches. Use your result to
determine which is the case.

k2 The figure shows a fountain in Sergel’s Square, Stockholm,
named after the sculptor Sergel. The fountain was designed by
architect David Helldén using a mathematical shape suggested by
his friend, the Danish mathematician, poet, designer, and author
Piet Hein. The equation of the shape is

|x|5/2 + |y|5/2 = a5/2,

where a is a constant. (a) Find the units of a. (b) Use implicit
differentiation to find an extremely simple expression for dy/dx in
terms of y and x. For simplicity, you can restrict your result to
the first quadrant. (Do not eliminate y in favor of x, because that
makes the expression more complicated.) (c) Check that the units
of your result make sense. (d) Check that the sign of your result
makes sense. (e) Check that the result makes sense where the curve
intersects the positive x and y axes.

k3 Evaluate d(xy), and show that you can recover the correct
results in the special cases where x or y is constant. Hint: rewrite
the expression in terms of the exponential function.

z1 Newton’s method fails in some cases. As an example, suppose
we have f(x) = |x|1/4, we want to find an x such that f(x) = 0, and
we start with x0 = 1 as our initial guess. Of course this is a silly
application, since it’s obvious that the solution is x = 0, but the
point is to study a simple example where the method fails. Find a
formula for |xn − xn−1| in this example. Then use this result in a
proof by induction to show that Newton’s method fails.

Problems 171



172 Chapter 7 From functions to variables



a / Adding the numbers from
1 to 7.

b / A trick for finding the sum.

c / Carl Friedrich Gauss (1777-
1855), a long time after gradu-
ating from elementary school.

Chapter 8

The integral

8.1 The accumulation of change
8.1.1 Change that accumulates in discrete steps

A schoolboy plays a trick

Toward the end of the eighteenth century, a German elementary
school teacher decided to keep his pupils busy by assigning them a
long, boring arithmetic problem: to add up all the numbers from
one to a hundred.1 The children set to work on their slates, and the
teacher lit his pipe, confident of a long break. But almost imme-
diately, a boy named Carl Friedrich Gauss brought up his answer:
5,050.

Figure a suggests one way of solving this type of problem. The
filled-in columns of the graph represent the numbers from 1 to 7,
and adding them up means finding the area of the shaded region.
Roughly half the square is shaded in, so if we want only an approx-
imate solution, we can simply calculate 72/2 = 24.5.

But, as suggested in figure b, it’s not much more work to get
an exact result. There are seven sawteeth sticking out out above
the diagonal, with a total area of 7/2, so the total shaded area is
(72 + 7)/2 = 28. In general, the sum of the first n numbers will be
(n2 + n)/2, which explains Gauss’s result: (1002 + 100)/2 = 5, 050.

There is a tantalizing hint here of a link with differential calculus,
because the derivative of a real function f(n) = (n2 +n)/2 is almost,
but not quite, equal to n.

Accumulation of change in discrete steps

Problems like this come up frequently. Imagine that each house-
hold in a certain small town sends a total of one ton of garbage to
the dump every year. Over time, the garbage accumulates in the
dump, taking up more and more space. If the population is constant,
then garbage accumulates at a constant rate. But maybe the town’s
population is growing. If the population starts out as 1 household
in year 1, and then grows to 2 in year 2, and so on, then we have
the same kind of problem that the young Gauss solved. After 100
years, the accumulated amount of garbage will be 5,050 tons. The

1I’m giving my own retelling of a hoary legend. We don’t really know the
exact problem, just that it was supposed to have been something of this flavor.
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d / Bernhard Riemann (1826-
1866).

pile of refuse grows more quickly every year.

Sigma notation

There is a convenient way of notating sums like the ones we’ve
been doing, which involves Σ, called “sigma,” the capital Greek
letter “S.” Here the “S” stands for “sum.” The sigma notation
looks like this:

100∑
i=1

i = 5, 050 (1)

This is read as “the sum of i for i from 1 to 100 equals 5,050.” The
version without the sigma notation is much more cumbersome to
write:

1 + 2 + 3 + . . .+ 100 = 5, 050 (2)

In equation (1), i is a dummy variable. We could have written

100∑
j=1

j = 5, 050

and it would have meant exactly the same thing. We’ve already
seen some examples of dummy variables. In set notation (box 1.1,
p. 15),

S = {x|x2 > 0} and T = {y|y2 > 0}

describe exactly the same set, and S=T. Similarly, the function f
defined by f(u) = u2 and the function g defined by g(v) = v2 are
the same function, f = g.

8.1.2 The area under a graph

The examples in section 8.1.1 involved change that occurred in
discrete steps. Calculus is concerned with continuous change. The
continuous analog of a discrete sum is the area under a graph. Let
f be a function that is defined on an interval2 [a, b] and assume the
value of f is always positive (so that its graph lies above the x axis).
How large is the area of the region caught between the x axis, the
graph of y = f(x) and the vertical lines y = a and y = b?

e / 1. The area under the graph of the function f . 2. Approximating
this area using 20 thin rectangles.

2For interval notation, see p. 15.
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8.1.3 Approximation using a Riemann sum

We can try to compute this area, figure e1, by approximating the
region with many thin rectangles, e2. The idea is that even though
we don’t know how to compute the area of a region bounded by
arbitrary curves, we do know how to find the area of one or more
rectangles. In this example, we’ve subdivided the interval from a
to b into n = 20 equal subintervals, each of width ∆x = (b − a)/n.
Let’s write x1 for the x value that lies in the center of the first
subinterval, etc. We’ve chosen the height of each rectangle so that
its top intersects the graph at this midpoint, so that, e.g., the height
of the first rectangle is f(x1). The area of the kth rectangle is the
product of its height and width, which is f(xk)∆x. Adding up all
the rectangles’ areas yields

R =
n∑
k=1

(height)(width) =
n∑
k=1

f(xk)∆x. (3)

This is an example of what is called a Riemann sum, meaning an
approximation to the area under a curve using rectangles. This
particular type of Riemann sum is one in which (a) the interval is
subdivided into equal parts, and (b) the value of the function is
sampled at the center of each subinterval.

If f is negative in certain places, then we will hit certain values of
k for which the product f(xk)∆x is negative. We will simply define
areas below the x axis to be negative. We think of the rectangle
as having positive width ∆x but negative height f(xk). A similar
geometrical example is the use of negative numbers for angles that
are directed contrary to a standard direction of rotation.

If our rectangles are all sufficiently narrow then we expect the
total area of all the rectangles to be a good approximation of the
area of the region under the graph.

8.2 The definite integral
8.2.1 Definition of the integral of a continuous function

This suggests the following definition.

Definition of the integral of a continuous function
If f is a continuous function defined on an interval [a, b], then the

integral of f(x) from x = a to b is defined as

lim
∆x→0

R,

where R is the type of Riemann sum defined above, using equal
subintervals sampled at their centers.
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f / Three Riemann sums for the same function on the same inter-
val. As ∆x approaches zero, the total area approaches the Riemann
integral.

Finding the integral of a function referred to as integrating it.
The idea behind the words is that one meaning of “integrate” in
ordinary speech is to assemble a whole out of smaller parts. For
example, you could integrate sit-ups into your routine at the gym.

Up until now we’ve been doing differential calculus. The other
half of calculus, integral calculus, consists of the study of integrals.
The type of integral defined here is called a definite integral. We’ll
see later that there is another type, called the indefinite integral.

This definition is restricted to continuous functions. A more
general definition is given in section 8.6.2, p. 192.

g / Example 1.

A triangle Example 1
Let f (x) = x . Then the integral of f from 0 to 1 represents the
area of a triangle with height 1 and a base of width 1. We know
from elementary geometry that this shape has an area equal to
1
2 (base)(height) = 1

2 , so we don’t need integral calculus to deter-
mine it. But let’s see how this works out if we do it as an integral,
in order to get comfortable with the tool and see if it works in a
case where we already know the answer.

When we split up the interval [0, 1] into n parts, we have ∆x = 1/n.
The first subinterval is [0,∆x ], and its center is the first sample
point, x1 = (1/2)∆x . Continuing in this way, we have xk = (k −
1/2)∆x , for k running from 1 to n. Since our function is just f (x) =
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x , we also have f (xk ) = (k − 1/2)∆x . The Riemann sum R is
shown in figure g. It looks almost exactly like the staircase in a
on p. 173. There are two differences: (1) in the original staircase
problem, the graph covered a region of graph paper n squares
wide and n squares tall, whereas the graph of our Riemann sum
is scaled down so that it fits inside a single square with a width of
1 and a height of 1; (2) all of the steps have been lowered by half
a step.

When we evaluate the Riemann sum, we find that the fates have
been kind to us, and its value in this example always seems to
be 1/2, for every n. For example, with n = 3 the Riemann sum is
1
6∆x + 1

2∆x + 5
6∆x = 9

6∆x = 1
2 .

To see that this is always true in this example, let’s go ahead and
compute the Riemann sum for an arbitrary n.

R =
n∑

k=1

f (xk )∆x

=
n∑

k=1

[(
k − 1

2

)
∆x
]
∆x

= (∆x)2
n∑

k=1

(
k − 1

2

)

= (∆x)2

[(
n∑

k=1

k

)
−

(
n∑

k=1

1
2

)]

= (∆x)2

[(
n∑

k=1

k

)
− n

2

]

The sum over k is the same one that we encountered in our pre-
vious study of the “staircase” sum; it equals (n2 + n)/2. The result
is:

R = (∆x)2
{[

n2 + n
2

]
− n

2

}
= (∆x)2 n2

2

But ∆x = 1/n, so R = 1/2 exactly for every n, and the integral
equals

lim
n→∞

R =
1
2

,

as expected geometrically.
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8.2.2 Leibniz notation

If we take equation (3) that defines the Riemann sum R, and
substitute it into the definition of the integral lim∆x→0R, the result
looks like this:

lim
∆x→0

n∑
k=1

f(xk)∆x

Leibniz invented the following expressive, versatile, and useful no-
tation for this limit: ∫ b

a
f(x) dx

The symbol
∫

is an “S” that’s been stretched like taffy. It stands
for “sum,” just as the sigma, Σ, stands for “sum.” But we think of∫

as meaning a smooth sum, whose graphical representation is the
area under a smooth curve rather than under a staircase. Notice
how the shape of

∫
is smooth. Like the k in the sigma notation,

the x in this example is a dummy variable. Therefore
∫ b
a f(x) dx

means exactly the same thing as
∫ b
a f(s) ds. The dummy variable

inside an integral is referred to as a variable of integration, and has
no meaning outside the integral. One of the reasons for writing the
dx is that it states what we’re integrating with respect to.

Leibniz notation for the area of a triangle Example 2
In example 1, we integrated the function f (x) = x from x = 0 to 1,
and found that it was 1/2. In Leibniz notation, the result is written
like this: ∫ 1

0
x dx =

1
2

It makes no difference if we notate this instead with s as the vari-
able of integration: ∫ 1

0
s ds =

1
2

A rectangle Example 3
. Evaluate ∫ 4

0
1 dx .

. The graph of this function is a rectangle with height 1 and width
4. A rectangle is a shape that can be sliced up into thin, vertical
slices that are also rectangles, and this is what any Riemann-sum
approximation to this integral will look like. The approximations
aren’t really approximations at all. Every Riemann sum has an
area of 4, so the limit occurring in the definition of the integral is 4.
This is of course the correct result for the area of this rectangle.

We defined the Leibniz notation as simply a notation for a cer-
tain limit, but we can think of it conceptually as a sum with infinitely
many terms. That is, we make a Riemann sum with infinitely many
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rectangles. Normally if you added up an infinite number of things,
you would expect to get an infinite result. But remember, each of
these rectangles is infinitely skinny. We think of dx as being the
infinitely small width, so that the area f(x) dx is infinitely small.
We’re therefore adding an infinite number of things, each of which
is infinitely small, so that the result can be finite. Recall that, as
discussed in section 2.9, p. 64, the real number system doesn’t have
infinitely big or infinitely small numbers; however, if we handle our
infinities according to the simple rules given in that section, nothing
bad happens. Historically, these rules weren’t formalized, and prac-
titioners just knew that if they did their work according to certain
methods, the Leibniz notation never led to the wrong result. This
confusion was definitively cleared up around 1965, but many math-
ematicians have been influenced by the historical uneasiness about
the Leibniz notation, so they prefer to think of

∫
. . . dx purely as a

shorthand notation for a limit. This is a matter of taste. Those who
prefer to think of it only as a shorthand will consider the dx inside
the integral to be nothing more than punctuation, like the period
at the end of a sentence. From this point of view, its only job is to
tell us what the dummy variable is, i.e., what we’re integrating with
respect to.

Moving the dx around Example 4
One of the rules in section 2.9 was that we were allowed to manip-
ulate differentials such as dx using any of the elementary axioms
of the real numbers (section 1.6, p. 25). One of these axioms
is that multiplication is commutative, uv = vu. Therefore the inte-
gral in example 2 on p. 178 can be written in either of the following
equivalent ways:∫ 1

0
x dx =

1
2

∫ 1

0
dx x =

1
2

Similarly, all of the following are the same integral:∫ 2

1

1
x

dx =
∫ 2

1
dx

1
x

=
∫ 2

1

dx
x

Most people would write it with the dx on top, which makes it more
compact.

The integral of . . . what? Example 5
How should we interpret this expression?∫ 4

0
dx

There doesn’t seem to be any function written inside the integral,
so what is it that we’re integrating? One of the elementary axioms
of the real numbers (section 1.6, p. 25) is that 1 is the multiplica-
tive identity, i.e., 1u = u for any number u. As discussed in section
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2.9, the elementary axioms also apply to differentials. Therefore
it’s valid to rewrite our integral as follows.

∫ 4

0
1 dx

The function we’re integrating is 1, which makes this the same
integral as the one in example 3 on p. 178. The result is 4.

Another way of interpreting the original form of the integral is that
dx means “a little bit of x ,” so that the integral expresses the idea
of letting x change from 0 to 4, and adding up all the little changes
in x . Clearly the sum of all the little changes will be the total
change, which is 4.

Another nice feature of the Leibniz notation is that it makes
the units come out right. Consider our earlier example of the town
dump. Suppose that the rate of garbage production is given by a
function p(t), where t is in units of years and p in tons per year.
Then the amount of garbage accumulated at the town dump from
year a to year b is given by

∫ b

a
p(t) dt.

The integral sign
∫

is a kind of sum, and the units of a sum are the
same as the units of each term. Since d means “a little bit of . . . ,”
dt stands for a little bit of time, and it therefore also has units of
years. The units of the terms in the sum are

tons

year
× years = tons,

which makes sense.

We can now see three independent reasons why an integral such
as
∫ 1

0 x
2 dx can’t be written like

∫ 1
0 x

2, without the dx:

1. If x has units, then the expression without the dx has the
wrong units.

2. It would be a sum of infinitely many numbers, each of them
finite, so it would probably be infinite.

3. If we don’t write the dx, we haven’t stated what we’re inte-
grating with respect to.
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h / Columns A and B in the
spreadsheet relate to each other
approximately as derivative and
integral.

i / The initial amount of garbage
is 1000 tons rather than zero.

8.3 The fundamental theorem of calculus
8.3.1 A connection between the derivative and the integral

We’ve already seen some clear indications of a link between
derivatives and integrals. A derivative is a rate of change, and an
integral measures the accumulation of change. Let’s say for con-
creteness that we’re talking about functions of time. If a function
A tells us the rate at which function B changes, then B tells us
how the rate of change measured by A has accumulated over time.
That is, it seems clear conceptually that the integral and the deriva-
tive are inverse operations: operations that undo each other, in the
same way that subtraction undoes addition, or a square root undoes
a square.

Figure h shows this in the context of discrete rather than con-
tinuous functions. Column A shows how many tons of garbage are
sent to the town dump per year. It is the rate of change of the pile
at the dump, which is given in column B. The population is grow-
ing, so column A is not constant. Presumably one of these columns
was typed into the spreadsheet from data collected by the town, but
we can’t tell from looking at the spreadsheet which one it was. It’s
possible that the raw data was column A, in which case column B
would have been constructed by telling the spreadsheet software to
calculate a running sum based on A. The running sum of a discrete
function is conceptually similar to the integral of a continuous one,
so we can say that in some loose sense that B is the integral of A.
On the other hand, it’s possible that the raw data was column B: a
municipal employee has been going out to the dump at yearly inter-
vals and measuring how big the pile of trash was. Column A would
then have been calculated from B by taking differences of successive
years. This is conceptually similar to saying that A is the derivative
of B.

8.3.2 What the fundamental theorem says

The fundamental theorem of calculus
Let f be a function defined on the interval [a, b], and let f be

differentiable on that interval. Then∫ b

a

df

dx
dx = f(b)− f(a). (4)

On the left-hand side, we have taken a function, differentiated
it, and then integrated it. The right-hand side is a simple expression
involving the original function, i.e., in some sense the integration has
undone the differentiation, and we are left with the same function
we started with.

To see why the right-hand side contains a difference of two values
of f , consider figure i, which is a modified version of h. What’s
changed is that rather than starting out empty in the first year,
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j / After translation by a com-
puter from English to Chinese,
and then back to English, the
original sentence is not quite the
same. By analogy, the funda-
mental theorem tells us that if
we differentiate, then integrate,
we cannot quite recover the
original function: we lose any
information that amounts to an
over-all additive constant.

in this version of history the dump started out with 1000 tons of
garbage already in it. This alteration of column B, however, has no
effect on column A. For example, the subtraction 1015− 1010 gives
the same result as 15− 10. The fundamental theorem tells us that
we can make a “round trip” by computing column A from column B
using differences, and then reconstructing column B again by taking
a running sum. But the round trip isn’t perfect (cf. figure j). Some
information is lost, because given column A, we can’t tell whether
the version of column B we should reconstruct is the one in figure h,
the one in i, or some other version that differs from them by some
other additive constant. What we can tell is that the difference
between the initial and final cells of column B must have been 28,
which is the sum of column A.

In terms of continuous functions rather than discrete ones, adding
a constant onto f doesn’t change the derivative df/dx. Therefore
the left-hand side of the fundamental theorem can never tell us the
value of f but only the difference in values between x = a and x = b.

8.3.3 A pseudo-proof

We’ve seen examples before in which the Leibniz notation makes
certain facts about calculus seem so obvious that they don’t seem
to need any further proof. This happens, for example, if we rewrite
the chain rule as dz/dx = (dz/dy)(dy/dx), which makes it seem
like a simple fact about algebra; but this is not quite a rigorous
proof for the reasons explained in example 18, p. 66. It’s a “pseudo-
proof,” but that’s not necessarily a bad thing. Pseudo-proofs can
be good. The pseudo-proof helps us to understand why the result
makes sense, and it can, if we wish, serve as the backbone of a more
rigorous proof.

We will give a real proof of the fundamental theorem in section
8.6.3, p. 194, but let’s warm up with the pseudo-proof, which is
pretty simple. We start with a statement of the result,∫ b

a

df

dx
dx

?
= f(b)− f(a), (5)

with the question mark above the equals sign to show that this is
what we are hoping to prove. For the same reasons as in example
18 on p. 66, it is not quite valid to cancel the factors of dx, but we’ll
do it anyway because this is only meant to be a pseudo-proof.∫ f(b)

f(a)
df

?
= f(b)− f(a) (6)

We can interpret the symbol df as “a little bit of f ,” so that the
left-hand side is the sum of many very small changes in f . The
limits of integration are now stated in terms of the values of f , since
f is now the variable of integration, not x. (It’s true, but not as
obvious, that this is equally valid regardless of whether f is always
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increasing or always decreasing. If f goes up and then comes back
down, we could, for example, have f(a) = f(b), so that the upper
and lower limits of integration were the same.)

It’s clearly reasonable now to hope that we can make the left-
hand side of equation (6) equal the right. The left-hand side says
that we add up many small changes in the variable f . The right-
hand side is simply the total accumulated change in f . To see this
a little more explicitly, let’s insert a factor of 1 inside the integral,
as in example 5, p. 179.∫ f(b)

f(a)
1 · df = f(b)− f(a) (7)

As in that example, this integral represents the area of a rectangle.
The rectangle has width f(b) − f(a) and height 1, so its area is
f(b)− f(a), and the equation holds.

This pseudo-proof is refined into a real proof in section 8.6.3,
p. 194,

8.3.4 Using the fundamental theorem to integrate; the
indefinite integral

Avoiding the Riemann sum

The fundamental theorem says this:∫ b

a
f ′(x) dx = f(b)− f(a).

In some examples, this gives us a tricky way to evaluate an inte-
gral exactly without having to muck around with Riemann sums.
Consider the integral ∫ 1

0
x dx,

whose geometrical interpretation is the area of a triangle and whose
value we showed to be 1/2 using Riemann sums in example 1, p. 176.
The function we’re integrating is x, but what if we could find a
function f whose derivative was x? —

f ′(x) = x

The fundamental theorem would then immediately tell us the result
of the integral.

Antiderivatives

The function f is called an antiderivative of the function f ′. Al-
though there are various tricks and methods for finding antideriva-
tives, in general the only way to find them is to guess and check.
One way to approach this one is to think of x as x1. We know that
when we differentiate a power, the power rule tells us to knock down
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k / All three functions are an-
tiderivatives of the constant
function 1/7. Shifting the graph
vertically doesn’t change its
derivative.

the exponent by one. That makes it reasonable to guess something
like x2 as an antiderivative of x. Checking our guess, we find that
it was almost, but not quite, right:

f(x) = x2 =⇒ f ′(x) = 2x [not quite what we wanted]

We wanted the derivative to be x, but we got 2x. This is easily fixed
by halving our guess:

f(x) =
1

2
x2 =⇒ f ′(x) = x

The function 1
2x

2 is an antiderivative of x. Therefore by the funda-
mental theorem we have∫ 1

0
x dx = f(1)− f(0)

=
1

2
12 − 1

2
02

=
1

2
.

This is the same result that we obtained earlier and with much more
labor using Riemann sums.

Because antiderivatives are so frequently used in order to eval-
uate definite integrals, expressions of the form f(b)− f(a) are very
common, and various abbreviations have been invented. We will
abbreviate

f(b)− f(a)
def
= f(x)

]b
x=a

= f(x)
]b
a
.

Any time we have an antiderivative, we can produce other an-
tiderivatives by adding a constant. For example, all of the following
are antiderivatives of the constant function 1/7 with respect to x:

1

7
x

1

7
x+ 1

1

7
x− 2

Differentiating any one of these with respect to x gives 1/7.

Leibniz notation for the indefinite integral

An antiderivative is more commonly referred to as an indefinite
integral — as opposed to the kind of integral we’ve been talking
about up until now, which is called a definite integral. The Leibniz
notation for an indefinite integral is an integral sign without any
upper or lower limits of integration. For example,∫

x dx =
1

2
x2 + c,

where c is any constant. One way of understanding this notation is
that both sides of this equals sign represent a certain solution set —
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l / Differentiation moves us
down the ladder of powers of x .
Integration climbs the ladder, as
in example 6. Example 7 deals
with the break in the middle of the
ladder.

the set of all functions whose derivative equals x. Similarly, when
we write √

4 = ±2,

we could say that both sides of the equation represent the solution
set {−2, 2} of the equation x2 = 4.

The following table summarizes the differences between definite
and indefinite integrals.

indefinite integral definite integral∫
f(x)dx is a function of x.

∫ b
a f(x)dx is a number.

By definition
∫
f(x) dx is any

function of x whose derivative
is f(x).

∫ b
a f(x)dx is defined in terms of

Riemann sums and can be in-
terpreted as the area under the
graph of y = f(x).

The variable of integration is
not a dummy variable. For ex-
ample,

∫
2x dx = x2 + c and∫

2t dt = t2 + c are expressed in
terms of different variables, so
they are not the same.

The variable of integration is a
dummy variable. For example,∫ 1

0 2x dx = 1, and
∫ 1

0 2t dt = 1,

so
∫ 1

0 2x dx =
∫ 1

0 2t dt.

Example 6
. Evaluate ∫

x6 dx

. Differentiation of a power will reduce the exponent by one, so
we want something like x7. The derivative of x7 would be 7x6,
which is too big by a factor of 7, so we want x7/7. Including an
arbitrary constant of integration, we have∫

x6 dx =
1
7

x7 + c.

Integral of 1/x Example 7
. Evaluate the indefinite integral∫

dx
x

.

. As discussed in example 4, p. 179, this notation says that the
function being integrated is 1/x , or x−1. Normally if we wanted
to find the antiderivative of x to some power, we would increase
the exponent by 1, as in example 6. But the derivative of x0 is
simply zero, so that doesn’t work here. We recall that the ladder of
powers is interrupted at this place, figure l. The indefinite integral
we want is

ln x + c.
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m / Example 8.

Area under the graph of 1/x Example 8
. Interpret the definite integral∫ 2

1

dx
x

.

graphically; then evaluate it .

. Figure m shows the graphical interpretation.

We saw in example 7 that the integral of 1/x was ln x + c. Us-
ing the fundamental theorem of calculus, the area is (ln 2 + c) −
(ln 1 + c) ≈ 0.693147180559945. Note that the constant of inte-
gration cancels out when we plug in the upper and lower limits
of integration and subtract; this always happens when we evalu-
ate a definite integral in this way, so constants of integration are
irrelevant in this context, and usually we would skip writing the +c.

Judging from the graph, it looks plausible that the shaded area is
about 0.7.

8.4 Using the tool correctly
8.4.1 When do you need an integral?

In section 1.5.2, p. 23, we asked the question, “When do you
need a derivative?” It’s natural to ask the same question about in-
tegrals. And since the derivative and integral are so closely linked
by the fundamental theorem of calculus, the answers should be re-
lated. If the relationship between two variables A and B is such that
expressing A in terms of B requires a derivative, then expressing B
in terms of A also requires calculus — it requires an integral.

As a concrete example, let x be your car’s odometer reading,
and let v be the reading on the speedometer. If v is constant, then
we don’t need calculus to express it in terms of x.

v =
∆x

∆t
[only if v is constant] (8)

But if v is changing, then equation (8) gives the wrong answer. We
need calculus.

v =
dx

dt
[always valid] (9)

Now suppose we want x in terms of v. If v is constant, then we
don’t need calculus. Simple algebraic manipulation of equation (8)
gives

∆x = v ∆t. [only if v is constant] (10)

But equation (10) clearly doesn’t make sense if v isn’t constant. If
you’re in stop-and-go traffic, then your velocity isn’t just one num-
ber. What would it even mean, then, to “multiply v by ∆t?” Mul-
tiplication is like that special thing that happens when a mommy
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and a daddy love each other very much; it’s something that hap-
pens between just one number and one other number. Applying the
fundamental theorem of calculus to equation (9), we get

∆x =

∫ t2

t1

v dt. [always valid] (11)

We expect the integral to come up in applications as a generalization
of multiplication that covers the case where one of the factors is
varying.

n / Example 9. The tractor does mechanical work.

Work Example 9
. In each of the examples in figure n, the tractor exerts a force

while traveling from position x1 to position x2, a distance ∆x = x2−
x1. If the force F is constant, then the quantity W = F∆x , called
mechanical work, measures the amount of energy expended. If
W is the same in all three cases in the figure, then the amount of
gas the tractor burns is identical in all three cases. How should
this definition of mechanical work be generalized to the case where
the force is varying?

. To generalize multiplication to a case where one of the factors
isn’t constant, we use an integral.

W =
∫ x2

x1

F dx

8.4.2 Two trivial hangups

In section 1.4, p. 21, we discussed two common difficulties that
students encounter in applying differentiation to real-world prob-
lems. The same two issues occur in integration. The first is that
although a calculus textbooks will often notate every problem in
terms of the letters y and x, any letters of the alphabet can occur
in real-life applications. The second is that one often encounters
symbolic constants, which are to be treated just like numerical con-
stants.
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A falling rock Example 10
. A falling rock has a velocity that increases linearly as a function
of time, v = at , where a is a constant. Use an indefinite integral
to find the position as a function of time.

. Let’s first figure out the roles played by the three letters:

• t — the independent variable

• v — a function of t

• a — a constant

• x — the function we get as an indefinite integral

Next, let’s warm up by translating this into a more stereotypical
problem from a calculus textbook. For example, we could be
given the function y = 7x and asked to find its indefinite integral.
The integral is

∫
y dx = (7/2)x2 + c.

The solution to the actual problem is found by simply shuffling
letters of the alphabet and treating the constant a the same way
we treated the constant 7. The setup of the integral is

x =
∫

v dt ,

and the result is
x =

1
2

at2 + c.

The constant of integration is interpreted as the initial position, so
it’s actually nicer to give it a notation that indicates that:

x =
1
2

at2 + xo

8.4.3 Two ways of checking an integral

Every indefinite integral can be checked by taking its derivative
to see if we can get back the original function. Furthermore, we can
often check an integral by checking its units.

Checking the falling rock Example 11
Let’s use these techniques to check the result of example 10. We
were given the function

v = at . (12)

We set up the integral as

x =
∫

v dt , (13)

and the result was
x =

1
2

at2 + xo. (14)
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First we take the derivative of both sides of equation (14). Be-
cause t is the independent variable here, these are derivatives
with respect to t .

dx
dt

?=
d
dt

(
1
2

at2 + xo

)
. (15)

The left-hand side is the definition of the velocity v . On the right-
hand side, we have to differentiate a polynomial. The constant
a is treated like any other multiplicative constant: it just “comes
along for the ride” in differentiation. The constant xo is treated like
any other additive constant in differentiation: it goes away.

v ?= a
d
dt

(
1
2

t2
)

(16)

The derivative of (1/2)t2 with respect to t is t , so we recover equa-
tion 12, and our solution passes the check.

Next we check the units. The units of the given equation (12)
ought to be right. If we remember the units of acceleration, we
can check its units. If we don’t remember the units of acceleration,
we need to infer the units of the symbolic constant a from equation
(12), because otherwise we won’t be able to do the check on our
own work. Based on equation (12), the units of acceleration are
implied to be meters over seconds squared, m/s2.

Our initial setup in equation (13) has the following units:

x︸︷︷︸
m

=
∫

v︸︷︷︸
m/s

dt︸︷︷︸
s

The integral can be thought of as a sum, and the units of a sum
are the same as the units of the things being added. This works
out properly, so our setup passes this check as well.

We finish by checking the units of our final result, equation (14).

x︸︷︷︸
m

=
1
2︸︷︷︸

unitless

a︸︷︷︸
m/s2

t2︸︷︷︸
s2

+ xo︸︷︷︸
m

8.4.4 Do I differentiate this, or do I integrate it?

In an end-of-chapter problem in a calculus textbook, you’re usu-
ally commanded either to integrate or to differentiate. In real-world
contexts, however, the question can arise of which one is the right
thing to do. Often we have a pair of variables, and we know that one
is the integral of the other, and one is the derivative of the other.
But which one is which? Memorization would be the wrong way
to approach this. The following is a list of possible ways of telling
which is is which.
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1. A derivative often represents a rate of change, an integral the
accumulation of change.

2. Real-world quantities usually have units, and only one way of
setting up the calculus relationship causes the units to make
sense.

3. The integral often occurs as a generalization of multiplication,
the derivative as a generalization of the slope of a line.

A chemical reaction Example 12
. Chemicals P and Q react to produce R. There is a reaction
rate r and a concentration C of the product. Which would be the
derivative of which, and which would be the integral of which?

. A derivative represents a rate of change, so r = dC/dt . An
integral represents the accumulation of change, so C =

∫
r dt .

An epidemic Example 13
. During an epidemic, there is some number of people I who have
the disease, and some number w of new cases per day being
reported. How would the calculus relationships between these
two variables be set up?

. The variable I is unitless; it is just a count of the number of
infected people. The variable w has units of cases per day, but
“cases” is really a count, not a unit, so the units of w are really
day−1 (inverse days). Conceptually, it’s clear that these two quan-
tities should be related as integral and derivative, and if we were
unsure of which way around to write the relationship, the units
would tell us.

w︸︷︷︸
day−1

=
dI
dt︸︷︷︸

unitless
days

I︸︷︷︸
unitless

=
∫

w︸︷︷︸
day−1

dt︸︷︷︸
days

An example of the third method was given in example 9, p. 187,
where the definition of mechanical work was generalized to cases
where the force varies.

8.5 Linearity
The most important and basic properties of the derivative (p. 16)
are that it adds, (f + g)′ = f ′+ g′, and scales vertically, (cf)′ = cf ′,
where c is a constant. When an operation has these properties, we
say that it is linear. Since the indefinite integral is defined as the
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o / Example 14. The total
area is the area of the square
base plus the area of the triangle
on top.

antiderivative, it follows that the indefinite integral is also linear,∫
[f(x) + g(x)] dx =

∫
f(x) dx+

∫
g(x) dx∫

cf(x) dx = c

∫
f(x) dx

and by the fundamental theorem the same is true for the definite
integral.

Example 14
. Evaluate the definite integral∫ 1

0
(1 + x) dx

and give a geometrical interpretation.

. The linearity of the definite integral gives∫ 1

0
(1 + x) dx =

∫ 1

0
1 dx +

∫ 1

0
x dx = 1 +

1
2

=
3
2

.

Figure o gives a geometrical interpretation.
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8.6 Some technical points
8.6.1 Riemann sums in general

As a tree grows, its radius increases continuously. When a tree
is cut down, as in figure p, we can see that the growth in each
year is not the same. For example, in most of California, where the
weather tends to be dry, a tree will usually show markedly increased
growth in a wet year. In this example, it’s natural to think of the
radius of the tree as an integral of the form

∫ ...
... dr. Of course it

would be silly to try to explicitly calculate this integral, when we
could simply measure the radius with a ruler! We don’t really need
calculus here, but, as is often the case, calculus guides us in thinking
about the concepts even when we aren’t going to use the techniques
of calculus. If we were to approximate this integral using a Riemann
sum, it would seem most natural to break the sum down into unequal
intervals ∆r. This is allowed by the definition of a Riemann sum,
and the kind of Riemann sum that we defined on p. 175, with equal
subintervals, was a more specific type.

p / Each tree ring adds ∆r to the radius of the tree. The ∆r values
are not all the same.

A Riemann sum can also sample the value of the function at
some other place than the center of each subinterval. The sample
point can be at the left side, at the right, and it doesn’t even need to
be chosen in a consistent way for all the subintervals of a particular
Riemann sum.

8.6.2 Integrating discontinuous functions

The definition of the integral given in section 8.2.1, for contin-
uous functions, has some technical shortcomings if we try to apply
it to badly behaved discontinuous functions. Most people who use
calculus neither know nor care about these issues, and it’s all right
to skip this subsection on a first reading.

To show what can go wrong, we define two functions, one naughty
and the other even naughtier.

• Let f(x) be defined as f(x) = 1/x, except at x = 0, where we
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set f(0) = 0.

• Let g(x) be the function such that if x is a rational number,
g(x) = 0, but if x is irrational, g(x) = 1.

The definition of the integral in section 8.2.1 involved Riemann
sums using equal subintervals, sampled at their centers. It carried
a warning label saying that it only applied to continuous functions.
Let’s ignore the warning and see what goes wrong when we apply it
to functions f and g.

The function f is discontinuous at only one point, and the dis-
continuity is one where it blows up to +∞ on one side and −∞
on the other. If we evaluate

∫ 1
−1 f(x) dx using equal subintervals

sampled at their centers, then because f is odd, every Riemann sum
is exactly zero. The Riemann sums for odd n use x = 0 as a sample
point, but these sums still vanish, because f(0) = 0. This integral,
as defined in section 8.2.1, comes out to be zero.

The function g is what’s known as a “pathological” example,
meaning that it’s so weird that we don’t expect to encounter such
a thing in any real-world application. For example, we could never
determine a function like g from physical measurements, because
measurements can’t distinguish a rational number from an irrational
one. If we evaluate

∫ 1
0 g(x) dx using equal subintervals, sampled at

their centers, then every sample point is a rational number, so the
integral comes out to be zero according to the definition in section
8.2.1.

The worrisome thing about both of these examples is that they
both gave zero, but zero is either misleading or wrong in both cases.
The result for the integral of f depended on a perfect cancellation
of very large negative and very large positive terms in each Rie-
mann sum. As n grew, these terms grew without bound, but they
still canceled. In any real-world application, it’s unlikely that this
would happen. For example, if f represented the reading on a meter
measuring the flow of water through a pipe (positive and negative
indicating two different directions of flow), then the extreme positive
and negative flows near x = 0 would have destroyed the meter!

The zero result for g is even more morally wrong. There are in
some sense more irrational numbers than rational ones, so if this
integral were to have some value, then clearly it should be 1, not 0.

What we would really like is to have our definition of the integral
be stated in such a way that integrals like these come out to be
undefined. This can be done by requiring in the definition that
no matter what Riemann sum we use, regardless of whether the
subintervals are equal or the sample points are at their centers, the
limit must come out to be the same.
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Definition of the integral (Riemann)
Suppose we have a number I such that for every ε > 0, there exists
a δ > 0 such that |R − I| < ε for every Riemann sum all of whose
intervals have width xk+1−xk < δ, with any choice of sample points
s1, . . . , sn. Then I is the Riemann integral of the function.

For the integrals of the functions f and g described above, there
is no number I with the properties described in the definition. The
integral is then undefined, as it should be. A function for which
such an I does exist is called Riemann integrable. A sufficient con-
dition for Riemann integrability is that the function has only finitely
many points of discontinuity, and it doesn’t blow up at these discon-
tinuities. For functions that are Riemann-integrable, the Riemann
integral gives the same answer as the simpler definition in section
8.2, p. 175.

8.6.3 Proof of the fundamental theorem

We now refine the pseudo-proof in section 8.3.3, p. 182, into a
real proof of the fundamental theorem of calculus. We want to prove
that ∫ b

a
f ′(x) dx = f(b)− f(a). (17)

We assume that f ′ is Riemann integrable, so that we have the free-
dom to subdivide the interval [a, b] and choose the sample points in
any way that is convenient. We will break up the interval [a, b] into
n equal subintervals [xi,xi+1], where i = 1, 2, . . .n − 1. However,
rather than restricting ourselves to sampling at the center of each
subinterval, we apply the mean value theorem to each subinterval,
and choose si to be the point for which

f ′(si) =
∆fi
∆x

,

where ∆fi = f(xi+1) − f(xi) and ∆x = xi+1 − xi. This can be
rearranged to give

∆fi = f ′(si)∆x.

Adding these up, we have

f(b)− f(a) =

n∑
i=1

f ′(si)∆x.

This tells us that by an appropriate choice of the sample points,
we can make every Riemann sum, for every n produce the re-
sult claimed by the fundamental theorem. It therefore follows that
the limit that defines the integral has the value claimed by the
theorem.�
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q / The definition of the error
function, erf(x).

8.7 The definite integral as a function of its
integration bounds

8.7.1 A function defined by an integral

Consider the expression

I =

∫ x

0
t2 dt.

What does I depend on? To find out, we calculate the integral

I =
[

1
3 t

3
]x
0

= 1
3x

3 − 1
303 = 1

3x
3.

So the integral depends on x. It does not depend on t, since t is a
“dummy variable.”

In this way we can use integrals to define new functions. For
instance, we could define

I(x) =

∫ x

0
t2 dt,

which would be a roundabout way of defining the function I(x) =
x3/3. Again, since t is a dummy variable we can replace it by any
other variable we like. Thus

I(x) =

∫ x

0
α2 dα

defines the same function (namely, I(x) = 1
3x

3).

This example does not really define a new function, in the sense
that we already had a much simpler way of defining the same func-
tion, by writing “I(x) = x3/3.” An example of a new function
defined by an integral is the so called error function from statistics:

erf(x) =
2√
π

∫ x

0
e−t

2
dt, (18)

so that erf(x) is the area of the shaded region in figure q.

The integral in (18) cannot be computed as a formula.3 As
described in more detail in section 10.1.2, p. 216, the integral in
(18) occurs very often in statistics, so it has been given its own
name, “erf(x)”.

8.7.2 How do you differentiate a function defined by an
integral?

The answer is simple, for if f(x) = F ′(x) then the fundamental
theorem says that ∫ x

a
f(t) dt = F (x)− F (a),

3For more on what this means, see section 9.3, p. 209.
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and therefore

d

dx

∫ x

a
f(t) dt =

d

dx

(
F (x)− F (a)

)
= F ′(x) = f(x),

i.e.
d

dx

∫ x

a
f(t) dt = f(x).

A similar calculation gives

d

dx

∫ b

x
f(t) dt = −f(x).

So what is the derivative of the error function? It is

erf ′(x) =
d

dx

[
2√
π

∫ x

0
e−t

2
dt

]
=

2√
π

d

dx

[∫ x

0
e−t

2
dt

]
=

2√
π
e−x

2
.

8.7.3 A second version of the fundamental theorem

The way that we differentiated the erf function in section 8.7.2
was an example of a more general idea, which can be considered as
an alternative version of the fundamental theorem of calculus. The
version of the fundamental theorem of calculus given in section 8.3,
p. 181, says that if we differentiate and then integrate, we end up
with the same function back again. This new second version says
that something similar happens if we integrate and then differenti-
ate:

d

dx

∫ x

a
f(t) dt = f(x)
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Problems
Problems a1-a3 don’t require you to calculate anything. The point
is to practice setting up and interpreting relationships between pairs
of variables that are related as integral and derivative.

a1 A barometric altimeter is a device that uses a measurement
of air pressure P to determine altitude y. Let the density of air be
ρ (Greek letter “rho,” the equivalent of Latin “r”), and the strength
of the earth’s gravitaty g. If ρ is constant, then the difference in
pressure between two heights is given by

P2 − P1 = ρg∆y.

Mountaineers and airplane pilots often traverse enough height that
it is not a good approximation to take ρ as being constant; the air is
less dense higher up. Use one of the methods of section 8.4.4, p. 189,
to generalize the equation appropriately. . Solution, p. 240

a2 Suppose that a business investment today will yield a stream
of income in the future f(t), in units of dollars per year. The revenue
starts today, at t = 0, and will end in the future at t = T . The
value of a dollar promised in the future is less than a dollar in hand
today, because today’s dollar could be put in the bank and draw
interest, growing in value exponentially as ert, where r is a constant
that is proportional to the interest rate. Consider the following two
proposed expressions for the present value V of the revenue stream,
i.e., the amount that one should rationally be willing to pay today
in order to receive it.

V =
d

dt

(
e−rT f(t)

)
V =

∫ T

0
f(t)e−rt dt

As described in section 8.4.4, p. 189, determine which of these is
nonsense based on the units. . Solution, p. 240

a3 An electric meter installed outside your household measures
the flow of electric current I. If you turn on a lamp, I increases, and
if you turn it back off again, I goes back down. The cost C of the
electricity is also a function of time; it grows until it’s time for the
electric company to bill you. Consider the following two proposed
relations between these variables.

I = k
dC

dt

I = k

∫ t2

t1

C dt

Here k is a constant. Use one of the methods of section 8.4.4, p. 189,
to determine which of these makes sense. . Solution, p. 241
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c1 (a) Compute
∑3

k=1
1
k . (b) Compute

∑3
m=1

1
m .

√

c2 (a) Which of the following are correct ways of notating the
area of a right triangle with both legs of length 1?∫ 1

0
x

∫ 1

0
x dx

∫ 1

0
u du

(b) The function f is defined by f(x) = x2 + 1. Why is it wrong to
notate the antiderivative of f as

∫
x2+1 dx? . Solution, p. 241

In each of problems c3-c6, the goal is to approximate the area be-
tween the graph and the x axis between x = 0 and x = 1, i.e., the
value of

∫ 1
0 f(x) dx for the given function f . Each function was

chosen such that for x ∈ [0, 1], we have y ∈ [0, 1] as well, so that the
graph fits into a 1× 1 square, as shown in the figure. These happen
to be functions for which it is not possible to find an antiderivative,
hence the need for an approximation. Divide the interval up into 5
equal subintervals, sample the function at the center of each interval,
and find the resulting Riemann sum. Maintain four decimal places
of precision throughout the calculation so that you are left with three
decimal places at the end that are not likely to be way off simply
because of rounding.

c3 (sinx)/x
√

c4 ex−1 tan(πx/4)
√

c5 [cos(ex)]2
√

c6 xx
√

Problems c3-c6.

e1 Find three different functions of x whose derivatives with
respect to x are all ex. . Solution, p. 241

e2 One or more of the following antiderivatives is incorrect.
As described in section 8.4.3, use differentiation to find which are
incorrect. Fix any incorrect ones.∫

x dx =
1

2
x2 + c

∫
e2x dx = e2x + c∫

x4 dx = 4x5 + c

∫
x−1 dx = x0 + c∫

ex dx = ex + c

. Solution, p. 241
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Evaluate the antiderivatives in problems e3-e14. If in doubt, guess
and check as in problem e2. With experience it gets easier to guess
correctly.

e3

∫
(2x+ 1) dx

√

e4

∫
(1− 3t) dt

√

e5

∫
(u2 − u+ 11) du

√

e6

∫ (
1 + x+

x2

2
+
x3

6
+
x4

24

)
dx

√

e7

∫
2 dq

q
[q > 0]

√

e8

∫
ea − e−a

2
da

√

e9

∫
ea + e−a

2
da

√

e10

∫
sin y dy

√

e11

∫
cos y dy

√

e12

∫
cos 2r dr

√

e13

∫
sin(r − π/3) dr

√

e14

∫
(sinx+ sin 2x) dx

√

Evaluate the antiderivatives in problems g1-g3. All letters other than
the variable of integration are constants.

g1

∫
(Ax+B) dx

√

g2

∫
bxa dx [a 6= −1]

√

g3

∫
cosωτ dτ

√

g4

∫
eβt dt

√
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In problems i1-i4, find the antiderivatives. All letters other than the
variable of integration are constants. These problems can be done
by first rewriting the given integrand in a form that you know how
to integrate.

i1

∫ √
Bx
√
x dx . Solution, p. 242

i2

∫
ez+β dz

√

i3

∫
p2 + k
√
p

dp
√

i4

∫
pw − q

3
√
w2

dw
√

These instructions are for problems k1-k4. Each function f was
chosen such that for x ∈ [0, 1], we have y ∈ [0, 1] as well, so that the
graph fits into a 1× 1 square, as shown in the figure.
(a) Make an eyeball estimate of the area under the curve.
(b) As in problems c3-c6, divide the interval up into 5 equal subin-
tervals, sample the function at the center of each interval, and find
the resulting Riemann sum. Maintain four decimal places of preci-
sion throughout the calculation so that you are left with three decimal
places at the end that are not likely to be way off simply because of
rounding. Your result should be roughly consistent with your esti-
mate from part a, and you can also check it online.
(c) Find the antiderivative

∫
f(x) dx, and check it online.

(d) Evaluate the definite integral,
∫ 1

0 f(x) dx, check it against the
approximations in parts a and b, and check it online.

Problems k1-k4.

k1 f(x) = cosx
√

k2 f(x) = sinx
√

k3 f(x) =
1

3
ex

√

k4 f(x) =
√
x

√
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Problem n1.

Problem n2.

Problem n3.

Problems n1-n4 all involve calculating the work done by a force, as
described in example 9, p. 187. These problems also require you to
check the units of your result. To do that, you will need to know the
following. The SI unit of force is the newton (N). Work has units
of (force)× (distance), or N·m (newton-meters).

n1 The figure shows an archer drawing a longbow. When the
string is pulled back to a distance x relative to its straight equi-
librium position, the force required from the right hand is given
approximately by F = kx, where k is a constant. (a) Infer the units
of k. (b) Find the amount of work done in pulling the bow from
x = 0 to x = b, where b is some number. (c) Check that the units
of your result make sense. . Solution, p. 242

n2 The figure shows the tension (force) of which a muscle is
capable. The variable x is defined as the contraction of the muscle
from its maximum length L, so that at x = 0 the muscle has length
L, and at x = L the muscle would theoretically have zero length. In
reality, the muscle can only contract to x = cL, where c is less than
1. When the muscle is extended to its maximum length, at x = 0,
it is capable of the greatest tension, To. As the muscle contracts,
however, it becomes weaker. There is a nearly linear decrease, which
would theoretically extrapolate to zero at x = L. (a) Infer the units
of c and To. (b) Find the maximum work the muscle can do in one
contraction, in terms of c, L, and To. (c) Show that your answer to
part b has the right units. (d) Show that your answer to part b has
the right behavior when c = 0 and when c = 1.

√

n3 In July 1994, Comet Shoemaker-Levy 9, which had previously
broken up into pieces, collided with the planet Jupiter. The figure
shows discolorations left in the jovian atmosphere where the impacts
had occurred. The diameter of each bruise is on the same order of
magnitude as the size of the planet earth. These were hard hits.
The energy came from the work done by the sun’s gravity on the
comet as it fell inward from the Oort Cloud, a hypothesized outer
region of the solar system. Let x be the comet’s position relative
to the sun, and assume that the comet falls in from the negative x
direction, i.e., from the side of the sun that we would visualize as
the left-hand side of the number line. The force of the sun’s gravity
on the comet is given by Newton’s law of gravity, F = GMm/x2,
where M is the mass of the sun, m is the mass of the comet, G is
a universal constant, and the plus sign indicates that the force is to
the right, i.e., toward the sun.
(a) Infer the units of G. (b) Find the work done on the comet as
it falls from x = −a to x = −b, where a is the distance from the
sun to the Oort cloud, b is the distance from the sun to Jupiter, and
both a and b are positive. (c) Check that the units of your answer
to part b make sense.

√
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Problem n4.

n4 See the instructions on p. 201. In a gasoline-burning car
engine, the exploding air-gas mixture makes a force on the piston,
and the force tapers off as the piston expands, allowing the gas to
expand. A not-so-bad approximation is that the force is given by
F = k/x, where x is the position of the piston. (a) Infer the units
of k. (b) Find the work done on the piston as it travels from x = a
to x = b. (c) Show that the result of part b can be reexpressed so
that it depends only on the ratio b/a. This ratio is known as the
compression ratio of the engine. (d) Check that the units of your
result in part c make sense.

√

q1 If a car on cruise control has the wrong speed at t = 0, it
will take some time for the system to correct the error. The system
may be designed to produce a velocity as a function of time given
by

v = u+ be−rt,

where u is the desired speed, r is a constant chosen by the designer,
and b is the initial error in velocity, which may be positive or nega-
tive. The value of r is a design compromise; if r is too small, then it
will take a long time for the car to get back to the right speed, but if
it is too big, the motion will be jerky or produce bad fuel efficiency.
(a) Infer the units of u, b, and r.
(b) Find the position x as a function of time.

√

(c) Give a physical interpretation of the constant of integration oc-
curring in your answer to part b.
(d) Check that your answer to part b has units that make sense.
(e) Check your answer by differentiating it.

q2 A piston in a car’s engine is connected to the crankshaft
through a piston rod. As the crankshaft spins at a constant rate, the
velocity of the piston in and out of the cylinder may be approximated
by a function

v = A cosωt+B cos 2ωt,

where ω (Greek letter “omega,” which makes the “o” sound) is the
number of radians per second at which the crankshaft is rotating,
and A and B are constants that depend on the length of the piston
rod and the radius of the circle traveled by the piston pin. Note that
expressions of the form sinxy are normally to be read as sin(xy); if
the intended meaning had been (sinx)y, then one would normally
have written it as y sinx.
(a) Infer the units of A and B. (The units of ω are simply inverse
seconds, s−1.)
(b) Find the piston’s position x as a function of time.

√

(c) Give a physical interpretation of the constant of integration oc-
curring in your answer to part b.
(d) Check that your answer to part b has units that make sense.
(e) Check your answer by differentiating it.
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In problems s1-s12, compute the definite integrals. These are in
groups of three similar problems, with the intention being that a
given student would do one from each group.

s1

∫ 2

1
u−2 du

√

s2

∫ 2

1
w−3 dw

√

s3

∫ 2

1
s−1/2 ds

√

s4

∫ 1

0
(2h3 − 3h+ 1) dh

√

s5

∫ 1

0
(z2 + 7z) dz

√

s6

∫ 1

0
(2r4 − 2r2 + r) dr

√

s7

∫ 4

0
(e2g + sin g −√g) dg

√

s8

∫ 4

1

(
1

a
− a−3/2 + cos a

)
da

√

s9

∫ 4

0
(cos p+ e−p + p3) dp

√

s10

∫ 1

0
u(
√
u+ 3
√
u) du

√

s11

∫ 1

−1
(x− 1)(3x+ 2) dx

√

s12

∫ 2

1

(
j +

1

j

)2

dj
√

u1 Is the following calculation wrong? Explain why or why not.∫ 1

0
x dx =

1

2
x2 + 42

]1

0

=
1

2

u2 Let the functions f and g be defined as follows.

f(x) =

{
ln(−x) + 7 if x < 0

lnx+ 11 if x > 0

g(x) = ln |x|

Is f an antiderivative of 1/x? Is g? Explain why or why not.
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Chapter 9

Basic techniques of
integration

9.1 Doing integrals symbolically on a
computer

The quaint little town of Carmel, California, has a touristy business
district that specializes in quaint little shops. I once went into a yarn
store there with my mother, who picked out two skeins of yarn for
a sweater. The business ran on paper and pen, which was arguably
sensible, since there was little room on the cramped counter for a
cash register. The following math problem resulted:

$5.60

× 2

The proprietor pulled out a calculator and typed 0 × 2 =. The
answer was 0, which she wrote down. Then 6× 2 =, and so on.

The point of this anecdote is that there are right ways and wrong
ways to use tools. Computers are a good tool for doing integrals,
but we should be able to do simple integrals by hand.

The computer programs used for doing integrals are called com-
puter algebra systems (CAS). I recommend a free and open-source
CAS called Maxima.1 The following example shows how to use
Maxima to do an easy indefinite integral — analogous to using the
calculator to find 6 × 2. The typewriter font shows what I typed
in, and the italicized text is the answer printed out by the program.
Note the mandatory semicolon at the end of the input line.

Integrating on a computer Example 1

integrate(cos(x),x);

sin(x)

1To use it through a web browser go to maxima-online.org. To download it
to your computer, go to maxima.sourceforge.net.
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a / Integrating (x − 1)1000000

by using a change of variable.
The function is not drawn realisti-
cally; the rounded edge has been
exaggerated in order to make
the shaded area under the curve
visible.

b / The change of variables
just renames the points on the
horizontal axis.

9.2 Substitution
Here’s an example of an integral that introduces a useful technique
of integration, and that also demonstrates what can go wrong if you
become completely dependent on computers to do integrals that you
should be able to do by hand.∫ 2

1
(x− 1)1000000 dx

I tested this on three CAS programs, and although two were able to
do it, one froze up indefinitely. My point is not that a certain CAS
is better than some other one.2 The point is that computers, unlike
humans, can’t step back and say, “Hey, what I’m doing isn’t working
so well. Maybe I should try something else.” The one that failed
presumably started grinding away to multiply out the polynomial
— all million and one terms of it: x1000000 − 1000000x999999 + . . .
This is certainly a strategy that would work, in theory, because it
would reduce the problem to one that we already know how to solve:
integrating a polynomial.

But there’s a better way to approach this, as suggested in figure
a. Geometrically, what we’re trying to calculate is the very small
area that is only visible at the corner of the figure. (Although the
limits of integration run from 1 to 2, the value of the integrand is
too small to matter except when x gets very close to 2.) Let’s shift
the graph to the left by one unit, as shown in the figure, and define
a new variable u = x − 1. The shift to the left doesn’t change the
amount of area under the curve; it simply relocates that area to a
new place. In terms of this variable, the integrand is u1000000, which
is a function that we know how to integrate. Expressed as an integral
with respect to u, the limits of integration are from u = 1 − 1 = 0
to u = 2 − 1 = 1. Do we need to do anything to the dx other
than change it to a du? Not in this case; implicit differentiation of
u = x − 1 gives du = dx. The result is that we can calculate the
same area using the following easier integral.∫ 1

0
u1000000 du

This is easily found to equal 1/1000001.

Figure b shows a nice way of thinking about this. Rather than
imagining that the graph itself has shifted horizontally, we can say
that the graph stayed in the same place, but we slid the axis over.
This is just like renaming the points on the horizontal axis. The
renaming is like sliding a ruler over without shrinking or expanding
the ruler. If we think of dx as a small change in x, and similarly
for du, then it makes sense that du = dx; the distance or difference

2For the record, the two that could handle it were Maxima and integrals.

com. The one that failed was another open-source program called Yacas.
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between two points on a ruler is the same regardless of whether we
slide the ruler around.

The procedure demonstrated above is called a change of variable,
substitution, or sometimes “u-substitution,” since it seems to be
common for calculus textbooks to use the letter u in this context.
In general, u can be defined as any function of x that you think will
help to massage the integral into a more workable form. Substitution
can be used on both definite and indefinite integrals.

Substitution with rescaling Example 2
A common rate of return on ultra-safe, ten-year bonds has his-
torically been about 5%, which means that money invested in
these bonds grows by a factor of e in about 1/ ln 1.05 ≈ 20 years.
Therefore we expect such an investment to grow exponentially
over time in proportion to the function et/20, where t is in years.
Bonds often pay dividends, and although the dividend payments
actually occur at discrete time intervals, it can be convenient to
model them mathematically as if they were paid continuously, so
that the total dividend payment is

D = k
∫ 10

0
et/20 dt ,

where k is a constant. Let’s evaluate this integral.

Since the derivative of ex is ex , we know how to integrate ex , and
it’s natural to look for a substitution that makes the integrand into
this form. The substitution clearly has to be

u =
t

20
. (1)

If we think of the time axis as a “time-line” like the ones in his-
tory books, then this substitution is like expanding the time-line’s
scale by a factor of 20. Solving for t = 20u and applying implicit
differentiation gives

dt = 20 du. (2)

The limits of integration change when expressed in terms of u.

t = 0 ⇔ u = 0 (3)

t = 10 ⇔ u =
1
2

(4)

We have to make use of all four of the equations (1)-(4) in order
to rewrite the integral in terms of the new variable u:

D = k
∫ 1/2

0
eu (20 du)

= 20k eu]1/2
0

= 20k
(

e1/2 − 1
)
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A nonlinear substitution Example 3
. Evaluate ∫

2x sin(x2 + 3) dx .

. Here the only substitution that has any hope of working is u =
x2 + 3. Implicit differentiation gives du = 2x dx , which happens to
be exactly the combination of factors that occurs in the integrand.
The integral therefore equals:

∫
sin u du = − cos u + c

= − cos(x2 + 3) + c

To check that this indefinite integral is correct, we can differentiate
it, which involves using the chain rule:

d
dx

(
− cos(x2 + 3) + c

)
= sin(x2 + 3) · 2x

The method used to check example 3 shows that we should be
able to interpret what’s going on in these substitutions in terms of
the chain rule. The chain rule says that

dF (G(x))

dx
= F ′(G(x)) ·G′(x),

so that ∫
F ′(G(x)) ·G′(x) dx = F (G(x)) + c.

In example 3, we had 2x = d
dx(x2 + 3). So let’s call G(x) = x2 + 3,

and F (u) = − cosu. Then

F (G(x)) = − cos(x2 + 3)

and

dF (G(x))

dx
= sin(x2 + 3)︸ ︷︷ ︸

F ′(G(x))

· 2x︸︷︷︸
G′(x)

= f(x),

so that ∫
2x sin(x2 + 3) dx = − cos(x2 + 3) + c.
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9.3 Integrals that can’t be done in closed form
Integral calculus was invented in the age of powdered wigs and harp-
sichords, so the original emphasis was on expressing integrals in a
form that would allow numbers to be plugged in for easy numerical
evaluation by scribbling on scraps of parchment with a quill pen.
This was an era when you might have to travel to a large city to get
access to a table of logarithms.

In this computationally impoverished environment, one always
wanted to get answers in what’s known as closed form and in terms
of elementary functions.

A closed form expression means one written using a finite num-
ber of operations, as opposed to something like the geometric series
1 + x+ x2 + x3 + . . ., which goes on forever.

Elementary functions are usually taken to be addition, subtrac-
tion, multiplication, division, logs, and exponentials, as well as other
functions derivable from these. For example, a cube root is allowed,
since 3

√
x = e(1/3) lnx, and so are trig functions and their inverses,

because they can be expressed in terms of logs and exponentials by
using Euler’s formula.

In theory, “closed form” doesn’t mean anything unless we state
the elementary functions that are allowed. In practice, when people
refer to closed form, they usually have in mind the particular set of
elementary functions described above.

A traditional freshman calculus course spends such a large amount
of time teaching you how to do integrals in closed form that it may
be easy to miss the fact that this is impossible for the vast majority
of integrands that you might randomly write down. Here are some
examples of impossible integrals:

∫
e−x

2
dx∫

xx dx∫
sinx

x
dx∫

ex tanx dx

The first of these is a form that is extremely important in statistics
(it describes the area under the standard “bell curve”), so you can
see that impossible integrals aren’t just obscure things that don’t
pop up in real life.

People who are proficient at doing integrals in closed form gener-
ally seem to work by a process of pattern matching. They recognize
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certain integrals as being of a form that can’t be done, so they know
not to try.

Disobedience Example 4
. Students! Stand at attention! You will now evaluate

∫
e−x2+7x dx

in closed form.

. No sir, I can’t do that. By a change of variables of the form
u = x + c, where c is a constant, we could clearly put this into the
form

∫
e−x2

dx , which we know is impossible.

Sometimes an integral such as
∫
e−x

2
dx is important enough

that we want to give it a name, tabulate it, and write computer sub-
routines that can evaluate it numerically. For example, statisticians
define the “error function” erf(x) = (2/

√
π)
∫
e−x

2
dx. Sometimes

if you’re not sure whether an integral can be done in closed form,
you can put it into computer software, which will tell you that it
reduces to one of these functions. You then know that it can’t be
done in closed form. For example, if you ask integrals.com to do∫
e−x

2+7x dx, it spits back (1/2)e49/4√π erf(x− 7/2). This tells you
both that you shouldn’t be wasting your time trying to do the inte-
gral in closed form and that if you need to evaluate it numerically,
you can do that using the erf function.

As shown in the following example, just because an indefinite
integral can’t be done, that doesn’t mean that we can never do a
related definite integral.

. Example 5
Evaluate

∫ π/2
0 e− tan2 x (tan2 x + 1) dx .

. The obvious substitution to try is u = tan x , and this reduces the
integrand to e−x2

. This proves that the corresponding indefinite
integral is impossible to express in closed form. However, the
definite integral can be expressed in closed form; it turns out to
be
√
π/2.

Sometimes computer software can’t say anything about a par-
ticular integral at all. That doesn’t mean that the integral can’t
be done. Computers are stupid, and they may try brute-force tech-
niques that fail because the computer runs out of memory or CPU
time. For example, the integral

∫
dx/(x10000 − 1) can be done in

closed form, and it’s not too hard for a proficient human to figure
out how to attack it, but every computer program I’ve tried it on
has failed silently.
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c / The integrand of example
6.

d / The integrand of example
7.

9.4 Doing an integral using symmetry or
geometry

Often we can figure out the value of an integral either by symmetry
or by using simple geometry.

An integral that vanishes by symmetry Example 6
. Evaluate

∫ 1

−1

sin x dx
1 + ex2 .

. I doubt that this can be done by finding the indefinite integral
and plugging in the limits of integration. I tried it using the open-
source program Maxima, and also using the web interface to a
proprietary program called Mathematica, and neither could do it.
However, the function is odd because the numerator is odd and
the denominator is even. Since the function is odd, and the limits
of integration are symmetrically placed on either side of the origin,
the definite integral is guaranteed to be zero; any negative contri-
bution to the integral on the left is guaranteed to be canceled by
a matching positive contribution on the right.

An integral that can be done by geometry Example 7
. Evaluate

∫ 2π

0
sin2 θ dθ.

. The hard way to do this integral is to dig up the appropriate trig
identity, which allows sin2 θ to be reexpressed in terms of sin 2θ.
The easy way is to look at the graph, figure d. The rectangle is
exactly half filled by the area under the graph. Since the rectangle
has area 2π, the integral equals π.
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9.5 Some forms involving exponentials,
rational functions, and roots

Here are some forms whose antiderivatives may not be obvious at
first sight.

9.5.1 Exponentials with the base not e

Since the derivative of ex with respect to x is just ex again, we
already know how to integrate ex. What about exponentials with
other bases? These can be converted into base e using the identity
ab = eb ln a, then integrated using a change of variable.

Example 8
. Evaluate

∫
3x dx .

. ∫
3x dx =

∫
ex ln 3 dx [using ab = eb ln a]

=
1

ln 3

∫
eu du [substituting u = x ln 3]

=
eu

ln 3

=
ex ln 3

ln 3

=
3x

ln 3
[ab = eb ln a again]

9.5.2 Some forms involving rational functions and roots

In sections 5.10-5.11, pp. 137-137, we summarized the derivatives
of various transcendental functions. Each of these potentially gives
some way to integrate something, by applying the fundamental the-
orem. Some of these derivatives are not themselves transcendental
functions, which makes it not at all obvious when looking at them
that they should be attacked in this way:

derivative integral
(tan−1 x)′ = (1 + x2)−1

∫
(1 + x2)−1 dx = tan−1 x+ c

(tanh−1 x)′ = (1− x2)−1
∫

(1− x2)−1 dx = tanh−1 x+ c

(sin−1 x)′ = (1− x2)−1/2
∫

(1− x2)−1/2 dx = sin−1 x+ c

(sinh−1 x)′ = (x2 + 1)−1/2
∫

(x2 + 1)−1/2 dx = sinh−1 x+ c

(cosh−1 x)′ = (x2 − 1)−1/2
∫

(x2 − 1)−1/2 dx = cosh−1 x+ c
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Problems
In problems a1-a12, evaluate the indefinite integrals. Check your
answer by differentiating it, and also check it online. All letters
other than the variable of integration are constants. These are in
groups of three similar problems, with the intention being that a
given student would do one from each group.

a1

∫
df

2f − 4
[f > 2]

√

a2

∫
dw

1− w
[w < 1]

√

a3

∫
dq

q
[q < 0]

√

a4

∫
2cx dx

√

a5

∫
cs ds [c > 0]

√

a6

∫
10a+δ dδ

√

a7

∫
dt

a2 + t2
√

a8

∫
dv(

v
k

)2
+ 1

√

a9

∫
dφ√
A2 − φ2

[A > 0]
√

a10

∫
cosn ζ sin ζ dζ

[ n 6= −1; ζ is lowercase Greek zeta, which makes the “z” sound.]√

a11

∫
ee
λ
eλ dλ

(λ is lowercase Greek lambda, which makes the “l” sound.)
√

a12

∫
esin p cos p dp

√
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In c1-c6, use a substitution to evaluate the indefinite integrals.

c1

∫
sin

(
π + x

5

)
dx

√

c2

∫
sin 2x dx√
1 + cos 2x

√

c3

∫
sin 2x dx

1 + cos2 x

√

c4

∫
sin 2x dx

1 + sinx

√

c5

∫
αe−α

2
dα

√

c6

∫
e1/t

t2
dt

√

c7

∫
(z+3)

√
z − 1 dz

√

In e1-e9, use a substitution to evaluate the definite integrals.

e1

∫ 2

1

u du

1 + u2

√

e2

∫ 2

1

µ2 dµ

µ3 + 1

√

e3

∫ 5

0

x dx√
x+ 1

√

e4

∫ 2

1

x2 dx√
2x+ 1

√

e5
∫ π

0 cos (θ + π/3) dθ √

e6
∫ π/3
π/4 sin3 θ cos θ dθ

√

e7

∫ √2

0
ξ(1 + 2ξ2)10 dξ

√

e8

∫ 3

2

dr

r ln r

√

e9

∫ 2

1

ln 2x

x
dx

√

In problems g1-g2, two indefinite integrals are given that involve
functions which look similar to one of the following:

e−x
2

xx
sinx

x
ex tanx

As discussed in section 9.3, the four functions given above can’t be
integrated in closed form. In each pair below, one can be integrated,
while the other can be made into one of the above forms by a sub-
stitution, proving that it’s impossible to integrate. Determine which
is which, integrate the one that can be done, and check your answer
to that one online.

g1 (a)

∫
x−3/4e−

√
x dx (b)

∫
x−1/2e−

√
x dx

√

g2 (a)

∫
x−2 sin

1

x
dx (b)

∫
x−1 sin

1

x
dx

√
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a / The probability that one
wheel on the slot machine will
give a cherry is 1/10. If the three
probabilities are independent,
then the probability that all three
wheels will give cherries is
1/10× 1/10× 1/10.

b / The earth’s surface is 30%
land and 70% water. If we spin
a globe and pick a random
point, the probabilities of hitting
land and water are 0.3 and 0.7.
Normalization requires that these
two probabilities add up to 1.

Chapter 10

Applications of the integral

10.1 Probability
10.1.1 Introduction to probability

Measurement of probabilities

Defining randomness is a difficult problem, tied up with classical
philosophical issues such as determinism and free will. Mathemati-
cians sidestep this question by simply using numbers between 0 and
1 to represent probabilities. A zero probability represents an event
that can’t happen, a probability of 1 an event than is guaranteed to
happen. In between we have things that might or might not happen.
A flipped coin comes up heads with probability 1/2.

Statistical independence

When ordinary people say that an event is “random,” they usu-
ally mean not just that it has a probability greater than 0 and less
than 1, but also that it can’t be predicted, because there is no way
of finding a connection with another event that caused it. This lack
of connection is considered by mathematicians to be separate from
randomness itself, and is defined as follows.

Definition of statistical independence
Events A and B are said to be statistically independent if the
probability that they will both happen is given by the product
of the two probabilities.

Events can be random but not independent. It might or might
not rain tomorrow, and there might or might not be a forest fire.
These events are both random, but they are not independent, since
rain makes fire less likely.

Normalization

Suppose that we are able to exhaustively list all of the possible
outcomes A, B, C, . . . of some situation, and that these outcomes are
mutually exclusive. Then exactly one of these outcomes must occur,
so the probabilities must add up to one. For example, suppose that
we flip a coin, and A is the event that the coin comes up heads,
B tails. Then PA + PB = 1

2 + 1
2 = 1. This property is called

normalization.
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c / The sum of the two dice
is a random variable with possible
values running from 2 to 12.

d / The histogram shows the
probabilities of the various out-
comes when rolling two dice.

e / A probability distribution
for height of human adults. (Not
real data.)

10.1.2 Continuous random variables

When numerical values are assigned to outcomes, the result is
called a random variable. The sum of the rolls of two dice is a
random variable, and we can assign probabilities to the different
results. For example, the probability of rolling 2 is 1/36, since the
probability of getting a 1 on the first die is 1/6, and similarly for
the second die. All of the relevant information about probabilities
can be summarized by the discrete function shown in figure d.

But when a random variable is continuous rather than discrete,
we usually cannot make a useful graph of the probabilities, because
the probability of any particular real number is typically zero. For
example, there is zero probability that a person’s height h will be
160 cm, since there are infinitely many possible results that are close
to that value, such as 159.999999999999996876876587658465436 cm.
What is useful to talk about is the probability that h will be less
than a certain value. The probability of h < 160 cm is about 0.5. In
general, we define the cumulative probability distribution P (x) of a
random variable to be the probability that the variable is less than
or equal to x. We can then define the probability distribution of the
variable to be

D(x) = P ′(x). (1)

Figure e shows an approximate probability distribution for human
height. Suppose we want to know the probability that our random
variable lies within the range from a to b. This is P (b)− P (a). By
the fundamental theorem of calculus, this can be calculated from
the definite integral of the distribution,

P (b)− P (a) =

∫ b

a
D(x) dx. (2)

That is, areas under the probability distribution correspond to prob-
abilities. If the random variable has some units, say centimeters,
then the units of the probability distribution D are the inverse of
those units, e.g., cm−1 in our example. In this example, D can be in-
terpreted as the probability per centimeter. A uniform distribution
is one for which D is a constant throughout the range of possible
values of x.

An extremely common bell-shaped probability distribution is

D(x) =
2√
π
e−x

2
,

called the “normal” or “Gaussian” distribution, which we encoun-
tered in section 8.7.1, p. 195.

If there are definite lower and upper limits L and U for the
possible values of the random variable, then normalization requires
that

1 =

∫ U

L
D(x) dx. (3)
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The average x̄ of a variable that takes on one of two discrete
values with equal probability is (x1 + x2)/2, which is the same as
x1P1 +x2P2. Generalizing this to a continuous random variable, we
have

x̄ =

∫ U

L
xD(x) dx. (4)

The average is also known as the mean, expectation, or the expected
value of x.

The standard deviation σx of a random variable x is a measure
of how much it varies around its average value. The symbol σ is the
lowercase Greek “sigma.” (Recall that uppercase sigma is Σ.) The
standard deviation of a continuous random variable is defined by

σx =

√∫ U

L
(x− x̄)2D(x) dx. (5)

10.1.3 One variable related to another

It often happens that one random variable y is defined by some
function of some other random variable x. In an experiment, for
example, one may measure x directly, and the value of x is a random
variable because of the finite precision of the measurement. If one
calculates the result of the experiment using some function y(x),
then the result is also a random variable. Let the corresponding
probability distributions and cumulative probability distributions
be Dx, Dy, and let P be the cumulative probability for a given x or
y. Then Dy can be determined from Dx by the chain rule:

Dy =
dP

dy
[definition of D]

=
dP

dx
· dx

dy
[chain rule]

= Dx ·
dx

dy
[definition of D]

=
Dx

y′(x)
[derivative of the inverse of a function]

A random goblin Example 1
Often in computer simulations or games one wants to produce
a random number with some desired distribution. For example,
in a fantasy adventure game, we might wish to generate an op-
ponent such as a goblin whose strength statistic y is distributed
according to some bell-shaped curve Dy with a given mean and
standard deviation. The random number generators supplied in
computer programming libraries usually output a number x with
a uniform distribution from 0 to 1, so that Dx = 1. We then have
y ′(x) = 1/Dy . Integrating both sides of this equation allows us to
find a function y (x) that determines the strength of the goblin.
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.Box 10.1 Applications to
economics

The following is an index of
applications of calculus to eco-
nomics that occur throughout
this book.

p. application
18 marginal

rate of
substitu-
tion

derivative

59 economic
order
quantity

extrema

106 the Laffer
curve

Rolle’s
theorem

115 supply
and
demand

intermediate
value
theorem

10.2 Economics

In 1882, at the age of 46, William Stanley Jevons went swim-
ming in the ocean and drowned. As a pioneer of classical economics,
Jevons developed mathematical models that treated humans as ra-
tional actors seeking to maximize their happiness. His choice to go
swimming that day was presumably based on the fact that swim-
ming would cause him to be happy, and on the conscious or uncon-
scious expectation that his risk of death would be low. But how
do we define “rational” and “happiness” mathematically? Believe
it or not, economists did produce definitions of these ideas, but in
the process the word “happiness” changed to “utility,” and the con-
cepts morphed into forms that were very different from their original
meanings. They are central to modern economics.

A 1947 paper by John von Neumann and Oskar Morgenstern
(VNM) introduces four axioms defining rationality, which I’ll de-
scribe here in English rather than equations:

1. Preferences are consistent.

2. Preferences are transitive: if you like outcome A more than B,
and B more than C, then you like A more than C.

3. No outcome is infinitely good or bad. For example, if Jevons
had believed that death was infinitely bad, he might have been
unwilling to accept any risk of drowning. (Cf. example 11,
p. 113.)

4. A preference for A over B holds regardless of whether some
other outcome exists. For example, if you like Bach more than
bebop, this is true regardless of whether it rains.

VNM prove that if these axioms hold, it is possible to assign a real
number u(x), called the utility function, to any outcome x such that
a rational actor always maximizes the expected value of u as defined
by equation (4), p. 217. The utility function can be rescaled or have
a constant added to it, but is otherwise unique.

Although I’ve described this in terms of human preferences, the
axioms may fail for humans or hold for non-humans. It only matters
if the actor behaves as if it were acting rationally, as defined by the
axioms. Milton Friedman writes:

I suggest the hypothesis that the leaves [on a tree] are
positioned as if each leaf deliberately sought to maximize
the amount of sunlight it receives, given the position of
its neighbors, as if it knew the physical laws determining
the amount of sunlight that would be received in vari-
ous positions and could move rapidly or instantaneously
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f / The utility function of ex-
ample 2.

from any one position to any other desired and unoccu-
pied position.

Daniel Kahneman, on the other hand, won the Nobel prize for his
work showing that humans often violate the VNM definition of ratio-
nality, but in ways that can be described scientifically. For instance,
he showed in experiments that subjects were willing to pay one price
for a trinket such as a mug, but that if they were given the mug,
they demanded a different and systematically higher price to sell
it. This violates axiom 1. Axiom 1 was implicitly assumed in the
description of the indifference curve in example 2, p. 18.

Playing the lottery Example 2
Joe is broke and homeless. He currently has an amount of money
x = 0. Joe’s utility function is given by

1− e−x ,

where x is in some appropriate units such as thousands of dol-
lars. The shape of this function is shown in figure f. It is concave
down, which is a feature that is almost always realistic for a utility
function that depends on how much money someone has. If Joe
is broke and gains $10, he’s really happy, whereas if Bill Gates
saw a $10 bill on the sidewalk, he probably wouldn’t bother to
bend over and pick it up.

Joe knows of a lottery in which each player receives a random
amount of money uniformly distributed on the interval from 0 to 1.
What price L should Joe be willing to pay for the lottery ticket, if
he has the opportunity to borrow the price from his mother?

If Joe enters and receives the minimum payout of 0, he will have
x = −L, i.e., he will be in debt to his mother for the price of the
ticket and have nothing to show for it. If he gets the maximum
reward of 1, he will have x = 1−L. Since this interval has width 1,
and the result is uniformly distributed, normalization requires that
D(x) = 1 within the interval. We find his expected utility.

ū =
∫ 1−L

−L
u(x)D(x) dx =

∫ 1−L

−L
(1− e−x ) dx

= x + e−x]1−L
−L = 1−

(
1− e−1

)
eL

Joe’s current utility function is u(0) = 0, so it is rational for him to
pay any amount L that gives him ū > 0. The result is

L < − ln
(

1− e−1
)
≈ 0.46.

If Joe’s utility function had been u(x) = x , then he should have
been willing to pay 0.5 units of money for a chance to win between
0 and 1 units. But because his utility function is nonlinear, he is
willing to pay less than that; he is risk-averse.
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.Box 10.2 Applications to
physics

The following is an index
of applications of calculus to
physics that occur throughout
this book.

p. application
22 velocity derivative
75 nuclear

stability
extrema

83 acceleration 2nd
derivative

88 Newton’s
2nd law

2nd
derivative

89 jerk and
damage

3rd
derivative

158 lever related
rates

161 pulley implicit
differenti-
ation

187 work definite
integral

188 constant-
acceleration
motion

indefinite
integral

10.3 Physics
A conservation law is a physical law stating that the total amount
of a certain quantity stays constant. (This usage of “conservation”
doesn’t have the usual connotation of not using something up. In
this context, the word implies that you couldn’t use it up if you tried,
because the total amount can’t go down!) Some important exam-
ples of conserved quantities are mass, energy,1 momentum, electric
charge, and angular momentum (a measure of rotational motion).
Conservation laws play a central role in physics. They are more fun-
damental than Newton’s laws of motion. For example, a ray of light
can be described by conservation of energy, but we get nonsense if
we try to apply Newton’s laws to it (m = 0, so we can’t compute
a = F/m).

Calculus deals with rates of change and the accumulation of
change, so it would seem to have no application to variables that
are guaranteed never to change! But conserved quantities can be
transferred or transformed at some rate. For example, we estimated
in example 9, p. 53, that hiking burns about 200 calories per hour.
The calorie is a unit of energy.2 This number represents the rate at
which food energy is being transformed into other forms of energy
such as body heat. For each conserved quantity, it’s of interest to
define a name, symbol, and unit for its rate of transfer or trans-
formation. We then have two variables, which are related to one
another as integral and derivative with respect to time. In the fol-
lowing table, the conserved quantity is given on top along with its
symbol and SI unit. Its derivative is the variable below.

angular electric
mass energy momentum momentum charge
m E p L q
kg joule, J N·s N·m·s coulomb, C

power force torque current
P F τ I

kg/s watt, W newton, N N·m ampere, A

Since the SI unit of time is the second (s), we have the following im-
plied relationships between some of the units: W=J/s and A=C/s.

The definitions of the conserved quantities are ultimately op-
erational definitions, meaning definitions that state the operations
needed in order to measure them. This may seem unsatisfactory,
but history has shown that every attempt at a “pure” conceptual
or mathematical definition has had to be revised. We can however

1According to Einstein’s famous E = mc2, mass and energy are equivalent or
interconvertible, so they aren’t separately conserved. Their separate conserva-
tion is however a good approximation in ordinary life, where relativistic effects
are negligible.

2Food calories are actually kilocalories, 1 kcal=1000 cal. The SI unit is not
the calorie but the joule.
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.Box 10.3 Examples of
equations for conserved
quantities

Let a material object of
mass m be moving at a veloc-
ity v that is small compared to
the speed of light. Then exper-
iments show that its momen-
tum and kinetic energy are ap-
proximately p = mv and E =
(1/2)mv2.

If a ray of light has energy
E, then its momentum is p =
E/c, where c is the speed of
light. This momentum is too
small to matter in everyday life.

If a material object moves
at a speed that is not small
compared to c, then it has p =
mv/

√
1− v2/c2.

Let a ring with mass m and
radius r rotate about its own
axis so that each point on it
moves at speed v. Then its
angular momentum is ±mvr,
with the sign indicating the di-
rection of rotation.

give rough conceptual definitions that are valid within the field of
mechanics, i.e., the study of material objects:

Mass is a measure of inertia. How hard is it to change the motion
of a certain object?

Momentum is a measure of the motion of an object. Suppose
our object hits another object, the “target.” Knowing the
momentum allows us to predict how strongly a standard target
will recoil. Momentum has a direction in space.

Energy comes in various forms such as kinetic energy (energy of
motion), heat (which is random motion at the atomic level),
and electrical energy (such as the chemical energy in food).
Energy has no direction.

Box 10.3 gives some examples of equations for conserved quantities.

Energy of an accelerating car Example 3
. A car of mass m starts moving from rest with a constant ac-
celeration a. If the speed is small enough, then air resistance is
negligible, and the power required from the engine at time t is

P = kma2t ,

where the unitless fudge factor k accounts for inefficiency of the
engine and frictional heating in the tires, and is assumed to be
constant. Find the energy expended by burning gas as a function
of time.

. Because the power isn’t constant, we can’t simply multiply “the”
power by the time t . The integral is needed here as the correct
generalization of multiplication (section 8.4.1, p. 186).

E =
∫

P dt [integral-derivative relationship of E and P]

=
∫

kma2t dt

= kma2
∫

t dt

=
1
2

kma2t2 [let initial energy consumption=0]

For motion with constant acceleration, v = at + vo, where vo = 0
here because the car starts from rest. The result can therefore be
rewritten as (1/2)kmv2. The factor (1/2)mv2 is called the kinetic
energy of the car. If the car was perfectly efficient, we would have
k = 1, and all the energy expended would go into kinetic energy,
rather than frictional heating.
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Problem a2.

Problem c1.

Problems
a1 A computer language will typically have a built-in subroutine
that produces a fairly random number that is equally likely to take
on any value in the range from 0 to 1. Find the standard deviation.√

a2 A laser is placed one meter away from a wall, and spun on
the ground to give it a random direction, but if the angle θ shown
in the figure doesn’t come out in the range from 0 to π/2, the laser
is spun again until an angle in the desired range is obtained.
(a) Find the probability distribution Dθ of the variable θ.
(b) Using the technique described in section 10.1.3 on p. 217, find
the probability distribution Dx of the distance x shown in the figure.√

a3 A computer language will typically have a built-in subroutine
that produces a fairly random number that is equally likely to take
on any value in the range from 0 to 1. If you take the absolute
value of the difference between two such numbers, the probability
distribution is of the form D(x) = k(1 − x). (a) Find the value of
the constant k that is required by normalization.

√

(b) Find the average value of x.
√

(c) Find the standard deviation.
√

c1 Scientists in Daniel Lieberman’s Skeletal Biology Lab at Har-
vard specialize in measuring the forces that act on a runner’s body,
which may help to improve coaching, reduce injuries, or provide sci-
entific evidence about whether barefoot running is healthier than
using running shoes. The graph in the figure shows a typical result
for the vertical force as a function of time that acts between the
runner’s foot and a treadmill, for one portion of a stride cycle.

The initial time t = 0 is the one when the vertical force is at its
greatest, shown in the drawing. At this time, the runner’s body is
about as low as it will get, and the vertical momentum is approxi-
mately zero.

The end of the graph, where the force goes to zero, is the time
at which the runner’s back toe leaves the ground and he becomes
airborne for a fraction of a second.
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The graph looks like a parabola, so let’s model it as one, F =
b(1− t2/τ2)− w, where τ is the time at which the graph ends, and
the −w term accounts for gravity. (a) Infer the units of the constants
b, τ , and w. (b) Find the runner’s vertical momentum at t = τ , i.e.,
the momentum with which he takes off into the air. (c) Check that
your answer to part b has units that make sense.

√

e1 In example 2, p. 219, we found the maximum amount that a
person should be willing to pay for a lottery ticket, given a certain
utility function. We assumed the utility function to be concave
down, which is usually realistic, for the reasons discussed in the
example. But there can also be cases where the utility function is
concave up. Suppose that Sally has cancer and no health insurance.
She can only survive if she gets expensive treatment, which she
can’t presently afford. A small amount of money does her very
little good, except that it slightly reduces the amount she still needs
to get together for the treatment. In this situation, it might make
sense to posit a concave-up utility function, such as u(x) = ex − 1,
in the notation of the previous example. Redo the example with
this utility function.

√
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Answers and solutions

Solutions to homework problems

Solutions for chapter 1

Page 36, problem a5:
The graph fails the vertical line test: a vertical line can pass through
more than one point on the graph, meaning that there can be more
than one pressure for a given temperature. Therefore p is not a
function of T .

If we were to interchange the axes of the graph, it would pass
the vertical line test. Therefore T can be described as a function of
p. For a given pressure, there is only one temperature.

Page 36, problem a6:
A line will not be a function when it fails the vertical line test, i.e.,
when the line itself is a vertical line. Such a line is a set of points
for which x is a constant. The equation (. . .)x + (. . .)y + (. . .) = 0
can only be reduced to x = constant if the coefficient of y is zero.

Page 36, problem a7:
All of them pass the vertical line test except for x = y2, which has
two y values for every positive x value. E.g., for x = 4, a vertical
line passes through both y = 2 and y = −2.

Page 36, problem a8:
We have a set of points that are included in the set, which are
those for which the given polynomial is negative. The set of points
that are not included are those for which the polynomial is zero
or positive. There is an edge or boundary between these two sets,
consisting of any points at which the polynomial is zero, i.e., the
roots of the polynomial. We could use the quadratic formula to find
these roots. But since u = 0 is clearly a root, it’s simpler just to
factor the polynomial into u(u − 2), which tells us that the other
root is 2. Clearly the set S must be either the interval (0, 2) or
everything that lies outside this interval. Checking u = 1, we see
that it’s the former possibility that holds. Thus a simpler description
is S = {u|u > 0 and u < 2}.

Page 37, problem c1:
The derivative is a rate of change, so the derivatives of the constants
1 and 7, which don’t change, are clearly zero. The derivative can be
interpreted geometrically as the slope of the tangent line, and since
the functions t and 7t are lines, their derivatives are simply their
slopes, 1, and 7. All of these could also have been found using the
formula that says the derivative of tk is ktk−1, but it wasn’t really
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necessary to get that fancy. To find the derivative of t2, we can use
the formula, which gives 2t. One of the properties of the derivative
is that multiplying a function by a constant multiplies its derivative
by the same constant, so the derivative of 7t2 must be (7)(2t) = 14t.
By similar reasoning, the derivatives of t3 and 7t3 are 3t2 and 21t2,
respectively.

Page 37, problem c2:
They are the same function. A function is a graph that satisfies
the vertical-line property. Both functions have all the same points
in their graphs, so the two definitions have defined the same graph,
which is the same function.

Page 37, problem c3:
Let m be the national budget surplus. For a brief period in an
economic boom during the Clinton administration, the U.S. federal
government had a budget surplus, so m was positive. Later, the
economy cooled down and m became negative again — which is its
normal state in the modern era. At some point in time t, m had to
change from being positive to being negative, so m(t) = 0. At that
moment, m was decreasing, so m(t) < 0.

Page 37, problem d1:
The addition property of the derivative tells us that we can break
this down into the sum of the derivatives (3x4)′, (−2x2)′, (x)′,
and (1)′. The derivative of the final, constant term is zero by
the constant property. Using the power rule and adding, we have
12x3 − 4x+ 1.

Page 38, problem e1:
One of the properties of the derivative is that the derivative of a
sum is the sum of the derivatives, so we can get this by adding up
the derivatives of 3z7, −4z2, and 6. The derivatives of the three
terms are 21z6, −8z, and 0, so the derivative of the whole thing is
21z6 − 8z.

For the numerical check, let’s use z = 1 and ∆z = 0.001. Call
the function f .

df

dz
= 13

∆f

∆z
=

5.0131− 5.0000

0.001
= 13.1

These agree well enough that it’s unlikely that we’ve made an error
such as a wrong sign or getting the wrong integer for one of the
coefficients.

Page 38, problem e6:
The first thing that comes to mind is the function f defined by
f(x) = 7x. Its graph would be a line with a slope of 7, passing
through the origin. Any other line with a slope of 7 would work too,
e.g., 7x+ 1 and 7x− 42.
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Page 40, problem i1:
This is exactly like problem e1, except that instead of explicit nu-
merical constants like 3 and −4, this problem involves symbolic
constants a, b, and c. The result is 2at+ b.

Page 42, problem m1:
When the vertical stretch factor r is a natural number, that means
that the function rf can be written as f + f + . . . + f , where the
number of terms in the sum is r. By the addition property of the
derivative, the derivative of rf is then f ′+f ′+ . . .+f ′, which is the
same as rf ′. This is the vertical stretch property.

Page 43, problem n1:
If the width and length of the rectangle are t and u, and Rick is
going to use up all his fencing material, then the perimeter of the
rectangle, 2t + 2u, equals L, so for a given width, t, the length is
u = L/2 − t. The area is a = tu = t(L/2 − t). The function only
means anything realistic for 0 ≤ t ≤ L/2, since for values of t outside
this region either the width or the height of the rectangle would be
negative. The function a(t) could therefore have a maximum either
at a place where da/dt = 0, or at the endpoints of the function’s
domain. We can eliminate the latter possibility, because the area is
zero at the endpoints.

To evaluate the derivative, we first need to reexpress a as a
polynomial:

a = −t2 +
L

2
t.

The derivative is
da

dt
= −2t+

L

2
.

Setting this equal to zero, we find t = L/4, as claimed.

Page 43, problem n2:
Since polynomials don’t have kinks or endpoints in their graphs,
the maxima and minima must be points where the derivative is
zero. Differentiation bumps down all the powers of a polynomial
by one, so the derivative of a third-order polynomial is a second-
order polynomial. A second-order polynomial can have at most two
real roots (values of t for which it equals zero), which are given by
the quadratic formula. (If the number inside the square root in the
quadratic formula is zero or negative, there could be less than two
real roots.) That means a third-order polynomial can have at most
two maxima or minima.

Page 44, problem r1:
The approximation we’re going to use is

dy

dx
≈ ∆y

∆x
.

Since we want an answer valid to three decimal places, it might
be reasonable to try a ∆x value such as 0.0001, since that’s a lot
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smaller than 10−3. We then have:

∆y

∆x
=

1/(1− 0.0001)− 1/(1− 0)

0.0001− 0
= 1.00010

It looks like we’re getting 1 as our answer. To see if the result is
really valid to three decimal places, we can try making ∆x smaller,
and see how much the result changes. With ∆x = 10−5, we get
1.00001. The change is in the fifth decimal place, so it looks like the
first three decimal places are correct.

Page 45, problem s1:
(a) We have

∆y ≈ dy

dx
∆x

= nkxn−1∆x

∆y

y
≈ n∆x

x

(b) Here n = 2, so a relative error of 0.1% in the length will cause
a 0.2% error in the area.

Page 45, problem s2:
Thinking of the rocket’s height as a function of time, we can see
that goal is to measure the function at its maximum. The deriva-
tive is zero at the maximum, so the error incurred due to timing is
approximately zero. She should not worry about the timing error
too much. Other factors are likely to be more important, e.g., the
rocket may not rise exactly vertically above the launchpad.

Solutions for chapter 2

Page 69, problem e1:
Reexpressing 3

√
x as x1/3, the derivative is (1/3)x−2/3.

Page 69, problem e2:
(a) Using the chain rule, the derivative of (x2 + 1)1/2 is (1/2)(x2 +
1)−1/2(2x) = x(x2 + 1)−1/2.
(b) This is the same as a, except that the 1 is replaced with an a2,
so the answer is x(x2 + a2)−1/2. The idea would be that a has the
same units as x.
(c) This can be rewritten as (a + x)−1/2, giving a derivative of
(−1/2)(a+ x)−3/2.
(d) This is similar to c, but we pick up a factor of −2x from the
chain rule, making the result ax(a− x2)−3/2.

Page 70, problem e4:
The vertical stretch rule says that stretching a function y(x) verti-
cally to form a new function ry(x) multiplies its derivative by r at
the corresponding points. That is, if r is a constant, then (ry)′ = ry′.
To prove this using the product rule, we have

(ry)′ = r′y + y′r.
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But if r′ is a constant, then r′ = 0, so the first term is zero, and we
have the claimed result.

Page 71, problem i2:
Let P be the point (1, 1), and let Q lie on the graph at x = 1 + dx.
The slope of the line through P and Q is

slope of line PQ =
∆y

∆x

=
(1 + dx)3 − 1

(1 + dx)− 1

=
3 dx+ 3 dx2 + dx3

dx

Discarding the dx2 and dx3 terms, this becomes 3, which is the same
as the result we got by doing limits.

Page 71, problem i3:
This would be a horrible problem if we had to expand this as a
polynomial with 101 terms, as in chapter 1! But now we know the
chain rule, so it’s easy. The derivative is[

100(2x+ 3)99
]

[2],

where the first factor in brackets is the derivative of the function
on the outside, and the second one is the derivative of the “inside
stuff.” Simplifying a little, the answer is 200(2x+ 3)99.

Page 71, problem i4:
Applying the product rule, we get

100(x+ 1)99(x+ 2)200 + 200(x+ 1)100(x+ 2)199.

(The chain rule was also required, but in a trivial way — for both
of the factors, the derivative of the “inside stuff” was one.)

Page 71, problem i5:
The chain rule gives

d

dx
((x2)2)2 = 2((x2)2)(2(x2))(2x) = 8x7,

which is the same as the result we would have gotten by differenti-
ating x8.

Page 71, problem i6:
Converting these into Leibniz notation, we find

df

dx
=

dg

dh

and

df

dx
=

dg

dh
· h.
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To prove something is not true in general, it suffices to find one
counterexample. Suppose that g and h are both unitless, and x has
units of seconds. The value of f is defined by the output of g, so
f must also be unitless. Since f is unitless, df/dx has units of
inverse seconds (“per second”). But this doesn’t match the units
of either of the proposed expressions, because they’re both unitless.
The correct chain rule, however, works. In the equation

df

dx
=

dg

dh
· dh

dx
,

the right-hand side consists of a unitless factor multiplied by a fac-
tor with units of inverse seconds, so its units are inverse seconds,
matching the left-hand side.

Page 74, problem p1:
We can make life a lot easier by observing that the function s(f)
will be maximized when the expression inside the square root is
minimized. Also, since f is squared every time it occurs, we can
change to a variable x = f2, and then once the optimal value of x
is found we can take its square root in order to find the optimal f .
The function to be optimized is then

a(x− f2
o )2 + bx.

Differentiating this and setting the derivative equal to zero, we find

2a(x− f2
o ) + b = 0,

which results in x = f2
o − b/2a, or

f =
√
f2

o − b/2a,

(choosing the positive root, since f represents a frequencies, and
frequencies are positive by definition). Note that the quantity inside
the square root involves the square of a frequency, but then we take
its square root, so the units of the result turn out to be frequency,
which makes sense. We can see that if b is small, the second term
is small, and the maximum occurs very nearly at fo.

There is one subtle issue that was glossed over above, which is
that the graph on page 74 shows two extrema: a minimum at f = 0
and a maximum at f > 0. What happened to the f = 0 minimum?
The issue is that I was a little sloppy with the change of variables.
Let I stand for the quantity inside the square root in the original
expression for s. Then by the chain rule,

ds

df
=

ds

dI
· dI

dx
· dx

df
.

We looked for the place where dI/ dx was zero, but ds/df could also
be zero if one of the other factors was zero. This is what happens
at f = 0, where dx/df = 0.
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Page 78, problem t1:
The graph looks like this:

Clearly it has a kink in it. No matter how far we zoom in, the
kink will never look like a line. The function is not differentiable at
x = 0.

Page 78, problem t2:
The function f(x) = 1/ sinx can be written as a composition f(x) =
g(h(x)) of the functions g(x) = 1/x and h(x) = sinx. We don’t have
to recall anything about the sine function, h, except that it looks
like a sine wave, so that it’s clearly continuous and differentiable
everywhere. The function g, on the other hand, is discontinuous
at 0, so it will be discontinuous at any x such that sinx = 0, and
f will also be discontinuous in these places. The relevant values
of x are {. . . ,−2π,−π, 0,π, 2π, . . .}. Since f is discontinuous at
these points, it is also nondifferentiable there, because discontinuity
implies nondifferentiability.

Page 78, problem t3:
A cusp will occur if both branches are vertical at x = 0, i.e., if f ′

blows up there.

For positive values of x, the definition of f is the same as xp, so
by the power rule f ′ = pxp−1. For negative x, the horizontal flip
property of the derivative (p. 16) tells us that f ′ equals minus the
value of the derivative at the corresponding point on the right.

For p < 1, the derivative blows up, and f has a cusp.

If f is to be differentiable at x = 0, then it can’t have a kink. By
the symmetry property described above, this requires that f ′(0) = 0.
This occurs if p > 1. The function is nondifferentiable when p ≤ 1.

Page 80, problem y1:
We can derive a three-factor product rule by grouping the three
factors into two factors, and then applying the two-factor rule.

(fgh)′ = [(fg)h]′

= (fg)′h+ h′fg

= (f ′g + g′f)h+ h′fg

= f ′gh+ g′hf + h′fg

Solutions for chapter 3
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Page 92, problem a1:
The first derivative is 12z3 − 8z. Differentiating a second time, we
get 36z2 − 8.

Page 92, problem c1:
The first derivative is 3t2 + 2t, and the second is 6t+ 2. Setting this
equal to zero and solving for t, we find t = −1/3. Looking at the
graph, it does look like the concavity is down for t < −1/3, and up
for t > −1/3.

Page 92, problem c2:
Since f , g, and s are smooth and defined everywhere, any extrema
they possess occur at places where their derivatives are zero. The
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converse is not necessarily true, however; a place where the deriva-
tive is zero could be a point of inflection. The derivative is additive,
so if both f and g have zero derivatives at a certain point, s does as
well. Therefore in most cases, if f and g both have an extremum at
a point, so will s. However, it could happen that this is only a point
of inflection for s, so in general, we can’t conclude anything about
the extrema of s simply from knowing where the extrema of f and
g occur.

Going the other direction, we certainly can’t infer anything about
extrema of f and g from knowledge of s alone. For example, if
s(x) = x2, with a minimum at x = 0, that tells us very little about
f and g. We could have, for example, f(x) = (x − 1)2/2 − 2 and
g(x) = (x+ 1)2/2 + 1, neither of which has an extremum at x = 0.

Solutions for chapter 4

Page 121, problem a1:
x

√
x+ 1−

√
x− 1

1000 .032
1000, 000 0.0010
1000, 000, 000 0.00032

The result is getting smaller and smaller, so it seems reasonable
to guess that the limit is zero.

Page 121, problem a2:
If R1 is finite and R2 approaches infinity, then 1/R2 is approaches
zero. 1/R1 + 1/R2 approaches 1/R1, and the combined resistance
R approaches from R1. Physically, the second pipe is blocked or
too thin to carry any significant flow, so it’s as though it weren’t
present.

If R1 is finite and R2 gets very small, then 1/R2 gets very big,
1/R1 + 1/R2 is dominated by the second term, and the result is
basically the same as R2. It’s so easy for water to flow through R2

that R1 might as well not be present. In the context of electrical
circuits rather than water pipes, this is known as a short circuit.

Page 121, problem c1:
The shape of the graph can be found by considering four cases: large
negative x, small negative x, small positive x, and large positive x.
In these four cases, the function is respectively close to 1, large,
small, and close to 1.
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The four limits correspond to the four cases described above.

Page 123, problem c8:
For x approaching ±∞, the x2 term dominates, and the function
approaches zero. Therefore the function has a horizontal asymptote
at zero.

Each root of the polynomial in the denominator will correspond
to a vertical asymptote. These roots can be determined from the
quadratic formula, which contains the square root of b2−4ac, called
the discriminant. If the discriminant is greater than zero, then there
will be two asymptotes, corresponding to the positive and negative
roots of the discriminant. If the discriminant is zero, then there will
be only one real root and one vertical asymptote. If the discriminant
is negative, then there are no real roots and no vertical asymptotes.

Problems 233



Page 123, problem c9:
It has a vertical asymptote where the denominator blows up, at
x = −1. It has horizontal asymptotes at y = 1, since in the limits
as x approach ±∞, the numerator and denominator are dominated
by the x7 terms, and the constant terms become unimportant.

Page 123, problem c10:
The function

f(x) =

(
x2 + 1

x2 + 2
− x2 + 3

x2 + 4

)−1

is not given in the form of a rational function, and the most straight-
forward thing to do here would be simply to change it into that form.
Before we do that, however, we could look for values of x at which
the quantity inside the parentheses would go to zero; these would
be the vertical asymptotes. Setting the denominator equal to zero
gives (x2 + 1)(x2 + 4) = (x2 + 2)(x2 + 3), which simplifies to 4 = 6.
There are no solutions, and therefore the function has no vertical
asymptotes.

Going ahead and recasting it as a rational function, we first need
to put the two terms over a common denominator. This gives

f(x) =

(
(x2 + 1)(x2 + 4)− (x2 + 2)(x2 + 3)

(x2 + 2)(x2 + 4)

)−1

,

which simplifies to

f(x) =

(
−2

(x2 + 2)(x2 + 4)

)−1

= −1

2
(x2 + 2)(x2 + 4).

We now see that the exotic-looking function was in fact just a poly-
nomial in disguise. Polynomials don’t have horizontal or vertical
asymptotes.

Page 123, problem e1:
Clearly f will be a non-decreasing function and will asymptotically
approach 1 as x approaches infinity. We can also say something
about the value of f ′(0). Bounty hunting is a nasty, dirty, dangerous
business that requires a significant up-front investment. Therefore
we don’t expect any bounty hunters to become active unless x is
high enough to give them some expectation of making a profit, and
we expect both f(0) = 0 and f ′(0) = 0, and the function should be
essentially zero until it starts to rise at some finite value of x.
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Page 124, problem g1:

Page 124, problem k1:
If f ′′ is continuous and sometimes positive and sometimes nega-
tive, then by the intermediate value theorem there is a point where
f ′′(x) = 0. (This is the part of the argument that fails for a function
on the rationals.) Furthermore, we must have some such x at which
f ′′ changes sign, and this is by definition a point of inflection.

Solutions for chapter 5

Page 138, problem a1:
A point on the unit circle has coordinates (x, y) = (cos θ, sin θ),
where θ is the angle measured counterclockwise from the x axis. If
we want both sine and cosine to be negative, then we need a point on
the unit circle that lies in the third quadrant, excluding the points
that coincide with the axes. That means θ ∈ (π, 3π/2).

Page 139, problem c1:
By the chain rule, the result is 2/(2t+ 1).

Page 139, problem c2:
We need to put together three different ideas here: (1) When a
function to be differentiated is multiplied by a constant, the constant
just comes along for the ride. (2) The derivative of the sine is the
cosine. (3) We need to use the chain rule. The result is ab cos(bx+c).

Page 139, problem c3:
The derivative of e7x is e7x ·7, where the first factor is the derivative
of the outside stuff (the derivative of a base-e exponential is just
the same thing), and the second factor is the derivative of the inside
stuff. This would normally be written as 7e7x.

The derivative of the second function is ee
x
ex, with the second

exponential factor coming from the chain rule.
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Page 139, problem c4:
To find a maximum, we take the derivative and set it equal to zero.
The whole factor of 2v2/g in front is just one big constant, so it
comes along for the ride. To differentiate the factor of sin θ cos θ,
we need to use the chain rule, plus the fact that the derivative of
sin is cos, and the derivative of cos is − sin.

0 =
2v2

g
(cos θ cos θ + sin θ(− sin θ))

0 = cos2 θ − sin2 θ

cos θ = ± sin θ

We’re interested in angles between, 0 and 90 degrees, for which both
the sine and the cosine are positive, so

cos θ = sin θ

tan θ = 1

θ = 45 ◦.

To check that this is really a maximum, not a minimum or an in-
flection point, we could resort to the second derivative test, but we
know the graph of R(θ) is zero at θ = 0 and θ = 90 ◦, and positive
in between, so this must be a maximum.

Page 139, problem c5:
Since I’ve advocated not memorizing the quotient rule, I’ll do this
one from first principles, using the product rule.

d

dθ
tan θ

=
d

dθ

(
sin θ

cos θ

)
=

d

dθ

[
sin θ (cos θ)−1

]
= cos θ (cos θ)−1 + (sin θ)(−1)(cos θ)−2(− sin θ)

= 1 + tan2 θ

(Using a trig identity, this can also be rewritten as sec2 θ.)

Page 139, problem c6:
There are no kinks, endpoints, etc., so extrema will occur only in
places where the derivative is zero. Applying the chain rule, we find
the derivative to be cos(sin(sinx)) cos(sinx) cosx. This will be zero
if any of the three factors is zero. We have cosu = 0 only when
|u| ≥ π/2, and π/2 is greater than 1, so it’s not possible for either
of the first two factors to equal zero. The derivative will therefore
equal zero if and only if cosx = 0, which happens in the same places
where the derivative of sinx is zero, at x = π/2 + πn, where n is an
integer.

236 Chapter 10 Applications of the integral



Page 139, problem c7:
Taking the derivative and setting it equal to zero, we have (ex − e−x) /2 =
0, so ex = e−x, which occurs only at x = 0. The second derivative is
(ex + e−x) /2 (the same as the original function), which is positive
for all x, so the function is everywhere concave up, and this is a
minimum.

Page 141, problem f1:
Let us first pause to mourn the loss of this perfectly good bottle of
beer, and to vow that such a thing must never be allowed to happen
again.
(a) Since T has units of degrees, both terms on the right-hand side
must also have units of degrees. The first term on the right is a, so
a has units of degrees. The second term consists of b multiplied by
an exponential. The exponential is unitless, so b must have units of
degrees. The input to the exponential must be unitless as well, so c
must have units of inverse seconds (s−1).
(b) dT/ dt = bce−ct

On the left side, the units are what is implied by the original in-
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terpretation of the Leibniz notation: we have a small change in
temperature divided by a small change in time, so the units are de-
grees per second ( ◦/s). On the right, the units come from the factor
bc, since the exponential is unitless. The units of bc are degrees
multiplied by inverse seconds, ( ◦)(s−1), and this matches what we
had on the left-hand side. (c) In this limit, the the temperature
approaches a, and the derivative approaches zero. It makes sense
that the derivative goes to zero, since eventually the beer will be in
thermal equilibrium with the air.
(d) Physically, a is the temperature of the air, b is the difference in
temperature at t = 0 between the air and the beer, and c measures
how good the thermal contact is between the air and the beer —
e.g., if the beer is in a styrofoam container, c will be small.

Solutions for chapter 6

Page 153, problem a1:
All five of these can be done using l’Hôpital’s rule:

lim
s→1

s3 − 1

s− 1
= lim

3s2

1
= 3

lim
θ→0

1− cos θ

θ2
= lim

sin θ

2θ
= lim

cos θ

2
=

1

2

lim
x→∞

5x2 − 2x

x
= lim

10x− 2

1
=∞

lim
n→∞

n(n+ 1)

(n+ 2)(n+ 3)
= lim

n2 + . . .

n2 + . . .
= lim

2n+ . . .

2n+ . . .
= lim

2

2
= 1

lim
x→∞

ax2 + bx+ c

dx2 + ex+ f
= lim

2ax+ . . .

2dx+ . . .
= lim

2a

2d
=
a

d

In examples 2, 4, and 5, we differentiate more than once in order
to get an expression that can be evaluated by substitution. In 4
and 5, . . . represents terms that we anticipate will go away after
the second differentiation. Most people probably would not bother
with l’Hôpital’s rule for 3, 4, or 5, being content merely to observe
the behavior of the highest-order term, which makes the limiting
behavior obvious. Examples 3, 4, and 5 can also be done rigorously
without l’Hôpit rule, by algebraic manipulation; we divide on the
top and bottom by the highest power of the variable, giving an
expression that is no longer an indeterminate form ∞/∞.

Page 153, problem a2:
Both numerator and denominator go to zero, so we can apply l’Hôpital’s
rule. Differentiating top and bottom gives (cosx− x sinx)/(− ln 2 ·
2x), which equals −1/ln2 at x = 0. To check this numerically, we
plug x = 10−3 into the original expression. The result is −1.44219,
which is very close to −1/ln2 = −1.44269 . . ..
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Page 153, problem a3:
L’Hôpital’s rule only works when both the numerator and the de-
nominator go to zero.

Page 153, problem a4:
Applying l’Hôpital’s rule once gives

lim
u→0

2u

eu − e−u
,

which is still an indeterminate form. Applying the rule a second
time, we get

lim
u→0

2

eu + e−u
= 1.

As a numerical check, plugging u = 0.01 into the original expression
results in 0.9999917.

Page 153, problem a5:
L’Hôpital’s rule gives cos t/1 → −1. Plugging in t = 3.1 gives -
0.9997.

Solutions for chapter 7

Page 169, problem e1:
We have the same power law for differentials as for derivatives, so
the result is 52B51 dB. Note that the answer is wrong without the
dB. If we think of differentials as “a little bit of. . . ,” then d(B52)
means a tiny change in B52. It can’t equal 52B51, because 52B51 is
not typically going to be tiny.

Page 169, problem e2:
As with derivatives, a constant factor just “comes along for the ride,”
so d(2000BC) = 2000 d(BC). We have the same product rule for
differentials as for derivatives, so the result is 2000(B dC + C dB).

Page 169, problem e3:
We have the same chain rule for differentials as for derivatives. If k
had been a function of some other variable t, and we’d been taking
the derivative of sin k with respect to t, then we would have had
cos k dk/dt. For the differential we have simply cos k dk.

Page 169, problem e4:
Applying the sum rule and then the product rule, we have
pdb+ bdp+ dj.

Page 170, problem g1:
Squaring both sides clears the square root.

y2 = x2 + 1

Problems 239



Implicit differentiation gives the following.

2y dy = 2x dx

dy

dx
=
x

y

=
x√

x2 + 1

Page 170, problem i1:

ex+y dx+ xex+y(dx+ dy) + dy = 0(
ex+y + xex+y

)
dx+

(
xex+y + 1

)
dy = 0

dy

dx
= −

(
1 + x

1 + xex+y

)
ex+y

Plugging in x = 0 and y = 0 gives dy/dx = −1.

Solutions for chapter 8

Page 197, problem a1:
The given equation

P2 − P1 = ρg∆y

involves multiplication of a number ρ by a number g∆y. If ρ is
not constant, then the proper way to generalize multiplication is
through an integral.

P2 − P1 =

∫ y2

y1

ρg dy

Page 197, problem a2:
The two options proposed are:

PV =
d

dt

(
e−rT f(t)

)
PV =

∫ T

0
f(t)e−rt dt

The units of the present value should be dollars.

The first proposed equation is nonsense based on units, because
f has units of dollars/year, and its time derivative would therefore
have units of dollars/year2, not dollars.

The units of the second equation do make sense. The Leibniz
notation for the integral is designed so that if you analyze the units
and treat the integral sign as a sum, the units are what they look
like they are. On the right-hand side, the units are (dollars/year)×
years = dollars, which matches the units on the left-hand side. This
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doesn’t prove that this equation is right, but it doesn’t prove it
wrong, either.

Page 197, problem a3:
The proposed relationships are:

I = k
dC

dt

I = k

∫ t2

t1

C dt

A derivative represents a rate of change, while an integral repre-
sents the accumulation of change. Based on these concepts, the first
equation makes sense: the current tells us how fast our accumulated
bill is adding up. The second one doesn’t make sense conceptually.

Page 198, problem c2:
(a) ∫ 1

0
x

This one is wrong because it’s written ungrammatically. It’s wrong
without the dx, for the reasons explained on p. 180.

∫ 1

0
x dx

This one is correct.

∫ 1

0
u du

This one is also correct. It doesn’t matter that a different letter is
used. The x or u is just a dummy variable.

(b) The correct way to notate this is
∫ (
x2 + 1

)
dx, so that the

differential dx is being multiplied by the whole expression. The
notation

∫
x2 + 1 dx makes it look like the dx is only multiplying

the 1.

Page 198, problem e1:
We know that the derivative of ex is ex. Adding a constant doesn’t
matter, so two more possibilities are ex + 7 and ex + 13.

Page 198, problem e2:∫
x dx =

1

2
x2 + c

Differentiating the right-hand side gives 1
2(2x) = x, which is correct.

(The derivative of the constant term is zero.)

∫
x4 dx = 4x5 + c
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Differentiating the right-hand side would give 20x4, which is wrong.
The coefficient on the right should be 1/5, not 4.∫

ex dx = ex + c

Differentiation gives ex, which is right.∫
e2x dx = e2x + c

Differentiation gives 2e2x, where the factor of 2 in front comes from
the chain rule. The integral is wrong as written. It should have a
factor of 1/2 in front. ∫

x−1 dx = x0 + c

This is wrong. Raising something to the power 0 simply gives 1, so
the right-hand side is 1 + c, which is a constant. If we differentiate
it, we get zero, not x−1. As in example 7, p. 185, the correct integral
is lnx+ c.

Page 200, problem i1:
First we put the integrand into the more familiar and convenient
form cxp, whose integral is (c/(p+ 1))xp+1:√

Bx
√
x = B1/2x3/4

Applying the general rule, the result is (4/7)B1/2x7/4.

Page 201, problem n1:
(a) As described in the instructions above the problem, force has
units of newtons (N). Since distance is measured in meters (m), the
constant k must have units of N/m.
(b)

W =

∫ b

0
kx dx =

1

2
kx2

]b
0

=
1

2
kb2

(c) As described in the instructions, work has units of N·m, so we
need to check that the expression (1/2)kb2 also has these units. The
1/2 is unitless. The constant k has units of N/m, and multiplying
these units by meters squares does give N·m.

Solutions for chapter 9

Solutions for chapter 10
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uating
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angular momentum, 220
antiderivative, see integral, indefinite
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best linear, 32
finite changes, 31
to derivative, 30
using the derivative, 30

Aristotle, 88
associativity, 26
average of a continuous variable, 217

calculus
defined, 13

cam, 159
chain rule, 55
charge, 220
commutativity, 26
completeness, see real numbers
completeness axiom, 27
complex numbers, 26
composition of functions, 56
computation

analog, 155
concavity, 84
conservation law, 220
constant

symbolic, 21
constant of integration, 184
continuity, 61
cumulative probability distribution, 216
curve sketching, 105
cusp, 61, 171
cycloid, 159

delta (∆) notation, 13
demand curve, 37
derivative

chain rule, 55
defined as a limit, 50
higher, 89

implicit, see implicit differentiation

informal definition, 14, 15

is a function, 18

locality, 15

of a product, 52

of a quotient, 60

of exponential, 126

of polynomials, 20

of powers, 20

proof, 57

properties, 16

second, 84

when needed, 23

differentiability, 51, 61

differential, 164

differentiation, see derivative

distributivity, 26

economic order quantity, 59

economics

applications of the integral, 218

energy, 220

erf, 195, 216

error function, 195, 216

even function, 17
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fractional, 57

irrational, 57
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zero as an, 57

exponential

derivative of, 126

extrema, 25, 86

extreme value theorem, 116

factorial, 66, 94

function, 13

inverse, 131

derivative of, 132

range of, 41

fundamental theorem of calculus

derivative of an integral, 196
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hyperreal numbers, 64
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implicit differentiation, 161

implicit function, 160
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indeterminate form, 145
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integral
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defined for a continuous function, 175
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symmetry, 211
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notation for, 15
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jerk, 89
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∞/∞, 149
multiple applications, 148
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derivative, 27

operator interpretation, 29
higher derivative, 89
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second derivative, 86
units, 28, 180
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formal definition, 49
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mean value theorem, 117
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by induction, 58
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